Current Students and Staff

// University News

Lack of math education negatively affects adolescent brain and cognitive development

  • A new study suggests that not having any maths education after the age of 16 can be disadvantageous
  • Adolescents who stopped studying maths showed a reduction in a critical brain chemical for brain development. This reduction in brain chemical was found in a key brain area that supports maths, memory, learning, reasoning and problem solving
  • This amount of brain chemical successfully predicted cognitive performance 19 months later
  • Because many pupils worldwide have/had limited or no access to education during the COVID-19 pandemic, understanding the significance of maths education on brain and cognitive development is particularly pressing

Adolescents who stopped studying maths exhibited greater disadvantage - compared with peers who continued studying maths - in terms of brain and cognitive development, according to a new study.

Some 133 students between the ages of 14-18 took part in an experiment run by researchers from the Department of Experimental Psychology at the University of Oxford and Loughborough University.

Unlike the majority of countries worldwide, in the UK 16-year-old students can decide to stop their maths education.

This situation allowed the team to examine whether this specific lack of maths education in students coming from a similar environment could impact brain development and cognition.

The study found that students who didn't study maths had a lower amount of a crucial chemical for brain plasticity (gamma-Aminobutyric acid) in a key brain region involved in many important cognitive functions, including reasoning, problem-solving, maths, memory and learning.

Based on the amount of brain chemical found in each student, researchers were able to discriminate between adolescents who studied or did not study maths, independent of their cognitive abilities.

Moreover, the amount of this brain chemical successfully predicted changes in mathematical attainment score around 19 months later. Notably, the researchers did not find differences in the brain chemical before the adolescents stopped studying maths.

Dr Francesco Sella, of Loughborough’s Centre for Mathematical Cognition, said: “The study shows how real-life educational choices, for example, the decision to study mathematics further or not, have a specific impact on brain neurochemicals, which also predict future mathematical achievement

“Thus, it is a step forward to understand the complex relationship between education, learning, and the brain.”

Roi Cohen Kadosh, Professor of Cognitive Neuroscience at the University of Oxford, led the study.

He said: "Maths skills are associated with a range of benefits, including employment, socioeconomic status, and mental and physical health.

“Adolescence is an important period in life that is associated with important brain and cognitive changes. Sadly, the opportunity to stop studying maths at this age seems to lead to a gap between adolescents who stop their maths education compared to those who continue it.

“Our study provides a new level of biological understanding of the impact of education on the developing brain and the mutual effect between biology and education.

"It is not yet known how this disparity, or its long-term implications, can be prevented. Not every adolescent enjoys maths so we need to investigate possible alternatives, such as training in logic and reasoning that engage the same brain area as maths."

Professor Cohen Kadosh added, "While we started this line of research before COVID-19, I also wonder how the reduced access to education in general, and maths in particular (or lack of it due to the pandemic) impacts the brain and cognitive development of children and adolescents.

“While we are still unaware of the long-term influence of this interruption, our study provides an important understanding of how a lack of a single component in education, maths, can impact brain and behaviour."

The findings have been published in the journal, Proceedings of the National Academy of Sciences.


Notes for editors

Press release reference number: 21/97

Loughborough is one of the country’s leading universities, with an international reputation for research that matters, excellence in teaching, strong links with industry, and unrivalled achievement in sport and its underpinning academic disciplines.

It has been awarded five stars in the independent QS Stars university rating scheme, named the best university in the world for sports-related subjects in the 2020 QS World University Rankings and University of the Year by The Times and Sunday Times University Guide 2019.

Loughborough is in the top 10 of every national league table, being ranked 7th in the Guardian University League Table 2021, 5th in the Times and Sunday Times Good University Guide 2020 and 6th in The UK Complete University Guide 2021.

Loughborough is consistently ranked in the top twenty of UK universities in the Times Higher Education’s ‘table of tables’ and is in the top 10 in England for research intensity. In recognition of its contribution to the sector, Loughborough has been awarded seven Queen's Anniversary Prizes.

The Loughborough University London campus is based on the Queen Elizabeth Olympic Park and offers postgraduate and executive-level education, as well as research and enterprise opportunities. It is home to influential thought leaders, pioneering researchers and creative innovators who provide students with the highest quality of teaching and the very latest in modern thinking.