Creating the next generation of Li ion batteries - new research

A breakthrough in the design of lithium ion batteries could lead to the next generation of safer more reliable solid-state power cells.

Li ion batteries are used all over the world to power everyday technologies including electric cars, power tools, mobile phones and laptops.

However, unstable and flammable electrolytes - and therefore interfaces - make the scale-up of this technology challenging.

A new paper published in Nature Communications this week shows how new solid-state materials can be designed to overcome some of these problems.

Tungsten and tellurium based double perovskite materials can be combined and used as the electrode and electrolyte respectively creating more compatible and stable interfaces.

Dr Pooja Goddard and former Loughborough chemistry colleague Dr Stephen Yeandel, now at Sheffield, were part of an EPSRC SUPERGEN consortium which supported the study led by the University of Sheffield and included the ISIS Pulsed Neutron and Muon Source and the Faraday Institution, Harwell Campus.

The Loughborough team used computational modelling to elucidate the redox properties of the two materials which are of the same crystalline family and showed that while tungsten can readily change oxidation state – ideal for an electrode, tellurium is resistant to redox cycling suitable for the electrolyte.

These results have been confirmed by the experimental team at Sheffield and the ISIS neutron facility.

Since the two materials are from the same family of perovskites, they are much more compatible, which makes it possible to create the next generation of Li ion solid-state battery.

Dr Goddard said: “We showed explicitly the Li+ ion ordering and local structural evolution as Li is inserted into each material.

“More importantly we show a defined stepwise change from W6+ to W5+ to W4+, whereas for the Te analogue, we reveal a reluctance of Te6+ to form Te5+ suggesting that redox cycling of the Te analogue is unlikely, which was also experimentally verified.”

Image: Getty

The next stage of project will involve further tuning of the materials to match the interfaces and concentrating on scalability of the materials for viable manufacturing, already being researched at the University of Sheffield.


Notes for editors

Press release reference number: 20/205

Loughborough is one of the country’s leading universities, with an international reputation for research that matters, excellence in teaching, strong links with industry, and unrivalled achievement in sport and its underpinning academic disciplines.

It has been awarded five stars in the independent QS Stars university rating scheme, named the best university in the world for sports-related subjects in the 2020 QS World University Rankings and University of the Year by The Times and Sunday Times University Guide 2019.

Loughborough is in the top 10 of every national league table, being ranked 7th in the Guardian University League Table 2021, 5th in the Times and Sunday Times Good University Guide 2020 and 6th in The UK Complete University Guide 2021.

Loughborough is consistently ranked in the top twenty of UK universities in the Times Higher Education’s ‘table of tables’ and is in the top 10 in England for research intensity. In recognition of its contribution to the sector, Loughborough has been awarded seven Queen's Anniversary Prizes.

The Loughborough University London campus is based on the Queen Elizabeth Olympic Park and offers postgraduate and executive-level education, as well as research and enterprise opportunities. It is home to influential thought leaders, pioneering researchers and creative innovators who provide students with the highest quality of teaching and the very latest in modern thinking.