Mathematical Sciences

Department staff

Professor Andrew Archer

Photo of Professor Andrew Archer

Acting Dean of School

Professor of Applied Mathematics and Theoretical Physics

2017 - present: Professor, Loughborough University, Department of Mathematical Sciences.
2018 (6 months) Acting Dean of Science, Loughborough University.
2015 - 2018 Head of Department of Mathematical Sciences, Loughborough University.
2013 - 2017 Senior Lecturer, Loughborough University, Department of Mathematical Sciences.
2006 - 2013 Lecturer, Loughborough University, Department of Mathematical Sciences.
2006 - 2011 RCUK Academic Fellowship, Loughborough University, Department of Mathematical Sciences.
2006 Research Scientist, University of Bath Physics Department.
2003 - 2006 EPSRC Postdoctoral Research Fellow in Theoretical Physics, University of Bristol.
2003 Visiting scientist, Heinrich-Heine-Universität Düsseldorf Physics Department.
2000 - 2003 Postgraduate, University of Bristol Physics Department. PhD in Theoretical Physics.
1996 - 2000 Undergraduate, University of Bristol. MSci Physics.

My research lies in the field of soft condensed matter and liquid state theory. Topics of current interests are:

  1. The behaviour of liquids at interfaces, such as the wetting properties of a liquid.
  2. To understand and predict the structures and patterns that are formed when a thin film of colloidal suspension is placed on a surface and the solvent subsequently evaporates. As the liquid evaporatively dewets, regular line patterns, branched finger patterns, network patterns and other structures can be formed by the colloids that are deposited on the surface.
  3. I develop "dynamical density functional theories", which are theories to describe the microscopic structure and dynamics of colloidal fluids.
  4. Theories to understand the phase behaviour of fluids: I address how and why (colloidal) fluids phase separate into a low density and high density phase and when they freeze or form a glass. I also study the dynamics of these phase changes.
  5. Understanding how and why quasicrystals form.

ResearcherID list , List on Google Scholar , LU Institutional List

71. Spatially localized quasicrystals
P. Subramanian, A.J. Archer, E. Knobloch and A.M. Rucklidge, Submitted , (2018).
arXiv:1709.06401

70. Dynamical density functional theory based modelling of tumour growth
H. Al-Saedi, A.J. Archer, and J. Ward, Accepted for publication in Phys. Rev. E , (2018).
arXiv:1807.03261

69. Structural crossover in a model fluid exhibiting two length scales: repercussions for quasicrystal formation
M.C. Walters, P. Subramanian, A.J. Archer and R. Evans, Phys. Rev. E 98, 012606 (2018).
PRE link, arXiv:1807.01467

68. Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties
A. Rebelo, A.J. Archer, X. Chen, C. Liu, G. Yang and Y. Liu, Accepted for publication in Sci. Technol. Adv. Mater. , (2018).
STAM link

67. Dynamical density functional theory analysis of the laning instability in sheared soft matter
A. Scacchi, A.J. Archer and J.M. Brader, Phys. Rev. E 96, 062616 (2017).
PRE link, arXiv:1711.00662

66. Dynamical density functional theory for the evaporation of droplets of nanoparticle suspension
C. Chalmers, R. Smith and A.J. Archer, Langmuir 33, 14490 (2017).
Langmuir link, arXiv:1712.00079

65. The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect
A.J. Archer, B. Chacko and R. Evans, J. Chem. Phys. 147, 034501 (2017).
JCP link, arXiv:1706.08744

64. Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces
C. Chalmers, R. Smith and A.J. Archer, J. Phys.: Condens. Matter 29, 295102 (2017).
JPCM link, arXiv:1706.01288. See also the associated JPhys+ article.

63. Nudged Elastic Band calculation of the binding potential for liquids at interfaces
O. Buller, W. Tewes, A.J. Archer, A. Heuer, U. Thiele and S.V. Gurevich, J. Chem. Phys. 147, 024701 (2017).
JCP link, arXiv:1706.01288

62. Solvent fluctuations around solvophobic, solvophilic and patchy nanostructures and the accompanying solvent mediated interactions
B. Chacko, R. Evans and A.J. Archer, J. Chem. Phys. 146, 124703 (2017)
JCP link, arXiv:1702.08278

61. Influence of the fluid structure on the binding potential: comparing liquid drop profiles from density functional theory with results from mesoscopic theory
A.P. Hughes, U. Thiele and A.J. Archer, J. Chem. Phys. 146, 064705 (2017).
JCP link, arXiv:1611.06957

60. Films, layers and droplets: The effect of near-wall fluid structure on spreading dynamics
H. Yin, D.N. Sibley, U. Thiele and A.J. Archer, Phys. Rev. E 95, 023104 (2017).
PRE link, arXiv:1611.00390

59. A new potential for radiation studies of borosilicate glass
A.F. Alharbi, K. Jolley, R. Smith, A.J. Archer and J.K. Christie, Nucl. Instrum. Methods B 393, 73 (2017).
NIMB link

58. Gradient dynamics models for liquid films with soluble surfactant
U. Thiele, A.J. Archer and L. Pismen, Phys. Rev. Fluids 1, 083903 (2016).
PRF link, arXiv:1609.00946

57. Three-dimensional icosahedral phase field quasicrystal
P. Subramanian, A.J. Archer, E. Knobloch and A.M. Rucklidge, Phys. Rev. Lett. 117, 075501 (2016).
PRL link, arXiv:1602.01256

56. Generation of defects and disorder from deeply quenching a liquid to form a solid
A.J. Archer, M.C. Walters, U. Thiele and E. Knobloch, Springer Proceedings in Mathematics & Statistics 166, 1 (2016).
Springer link, arXiv:1505.07976

55. Crystallisation of soft matter under confinement at interfaces and in wedges
A.J. Archer and A. Malijevsky, J. Phys.: Condens. Matter 28, 244017 (2016).
JPCM link, arXiv:1602.01256

54. Two-dimensional colloidal fluids exhibiting pattern formation
B. Chacko, C. Chalmers and A.J. Archer, J. Chem. Phys. 143, 244904 (2015).
JCP link, arXiv:1512.00872

53. Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase
A.J. Archer, A.M. Rucklidge and E. Knobloch, Phys. Rev. E 92, 012324 (2015).
PRE link, arXiv:1507.01682

52. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling
A.P. Hughes, U. Thiele and A.J. Archer, J. Chem. Phys. 142, 074702 (2015).
JCP link, arXiv:1501.07046

51. An introduction to inhomogeneous liquids, density functional theory, and the wetting transition
A.P. Hughes, U. Thiele and A.J. Archer, Am. J. Phys. 82, 1119 (2014).
AJP link, arXiv:1311.1964

50. Solidification in soft-core fluids: disordered solids from fast solidification fronts
A.J. Archer, M.C. Walters, U. Thiele and E. Knobloch, Phys. Rev. E 90, 042404 (2014).
PRE link, arXiv:1407.7099

49. Coarsening modes of clusters of aggregating particles
A. Pototsky, U. Thiele and A.J. Archer, Phys. Rev. E 89, 032144 (2014).
PRE link, arXiv:1401.7046

48. Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study
A. Malijevsky and A.J. Archer, J. Chem. Phys. 139, 144901 (2013).
JCP link, arXiv:1309.4326

47. Quasicrystalline ordering and a crystal-liquid state in a soft-core fluid
A.J. Archer, A.M. Rucklidge and E. Knobloch, Phys. Rev. Lett. 111, 165501 (2013).
PRL link, arXiv:1304.2252

46. Note on the hydrodynamic description of thin nematic films: strong anchoring model
T.-S. Lin, L.J. Cummings, A.J. Archer, L. Kondic and U. Thiele, Phys. Fluids 25, 082102 (2013).
PoF link, arXiv:1301.4110

45. Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity
U. Thiele, A.J. Archer, M.J. Robbins, H. Gomez and E. Knobloch, Phys. Rev. E 87, 042915 (2013).
PRE link, arXiv:1301.4472

44. Relationship between Local Molecular Field Theory and Density Functional Theory for non-uniform liquids
A.J. Archer and R. Evans, J. Chem. Phys. 138, 014502 (2013).
JCP link, arXiv:1211.7321

43. Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration
U. Thiele, A.J. Archer and M. Plapp, Phys. Fluids 24, 102107 (2012).
PoF link, arXiv:1202.1688

42. Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids
A.J. Archer, M.J. Robbins, U. Thiele and E. Knobloch, Phys. Rev. E 86, 031603 (2012).
PRE link, arXiv:1206.0902

41. Modelling the formation of structured deposits at receding contact lines of evaporating solutions and suspensions
L. Frastia, A.J. Archer and U. Thiele, Soft Matter 8, 11363 (2012).
Soft Matter link, arXiv:1208.6127

40. Modeling the structure of liquids and crystals using one- and two-component modified phase-field crystal models
M.J. Robbins, A.J. Archer, U. Thiele and E. Knobloch, Phys. Rev. E 85, 061408 (2012).
PRE link, arXiv:1112.2074

39. Phase separation in fluids exposed to spatially periodic external fields
R.L.C. Vink and A.J. Archer, Phys. Rev. E 85, 031505 (2012).
PRE link, arXiv:1109.6746

38. Phase separation dynamics in a two-dimensional magnetic mixture
K. Lichtner, A.J. Archer and S.H.L. Klapp, J. Chem. Phys. 136, 024502 (2012).
JCP link, arXiv:1109.6756

37. Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behaviour
O. Zvyagolskaya, A.J. Archer and C. Bechinger, Europhys. Lett. 96, 28005 (2011).
EPL link, arXiv:1108.5966

36. Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory
M.J. Robbins, A.J. Archer and U. Thiele, J. Phys.: Condens. Matter 23, 415102 (2011).
JPCM link, arXiv:1106.4467. See also the associated Labtalk article.

35. Nucleation of liquid droplets in a fluid with competing interactions
A.J. Archer and R. Evans, Mol. Phys. 109, 2711 (2011).
Mol Phys link, arXiv:1106.4645

34. Ratcheting of driven attracting colloidal particles: Temporal density oscillations and current multiplicity
A. Pototsky, A.J. Archer, S. Savel'ev, U. Thiele and F Marchesoni, Phys. Rev. E 83, 061401 (2011).
PRE link, arXiv:1103.2871

33. On the interplay between sedimentation and phase separation phenomena in two-dimensional colloidal fluids
A.J. Archer and A. Malijevsky, Mol. Phys. 109, 1087 (2011).
Mol Phys link, arXiv:1011.2694

32. Dynamical model for the formation of patterned deposits at receding contact lines
L. Frastia, A.J. Archer, U. Thiele, Phys. Rev. Lett. 106, 077801 (2011).
PRL link, arXiv:1008.4334

31. The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics
P. Hopkins, A. Fortini, A.J. Archer, M. Schmidt, J. Chem. Phys. 133, 224505 (2010).
JCP link, arXiv:1010.2124

30. Collective shuttling of attracting particles in asymmetric narrow channels
A. Pototsky, A.J. Archer, M. Bestehorn, D. Merkt, S. Savel'ev and F. Marchesoni, Phys. Rev. E 82, 030401(R) (2010).
PRE link, arXiv:1004.4534

29. Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation
A.J. Archer, M.J. Robbins and U. Thiele, Phys. Rev. E 81, 021602 (2010).
PRE link, arXiv:1001.2661

28. Solvent mediated interactions between model colloids and interfaces: A microscopic approach
P. Hopkins, A.J. Archer and R. Evans, J. Chem. Phys. 131, 124704 (2009).
JCP link, arXiv:0908.2338

27. Selectivity in binary fluid mixtures: static and dynamical properties
R. Roth, M. Rauscher and A.J. Archer, Phys. Rev. E 80, 021409 (2009).
PRE link, arXiv:0908.1315

26. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions
U. Thiele, I. Vancea, A.J. Archer, M.J. Robbins, L. Frastia, A. Stannard, E. Pauliac-Vaujour, C.P. Martin, M.O. Blunt and P.J. Moriarty, J. Phys.: Condens. Matter 21, 264016 (2009).
JPCM link, arXiv:1001.2669

25. Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics
A.J. Archer, J. Chem. Phys. 130, 014509 (2009).
JCP link, arXiv:0812.1113

24. Interfacial and wetting properties of a binary point Yukawa fluid
P. Hopkins, A.J. Archer and R. Evans, J. Chem. Phys. 129, 214709 (2008).
JCP link, arXiv:0810.5229

23. Theory for the phase behaviour of a colloidal fluid with competing interactions
A. J. Archer, C. Ionescu, D. Pini and L. Reatto, J. Phys.: Condens. Matter 20, 415106 (2008).
JPCM link, arXiv:0808.4036

22. Two-dimensional fluid with competing interactions exhibiting microphase separation: theory for bulk and interfacial properties
A.J. Archer, Phys. Rev. E 78, 031402 (2008).
PRE link, arXiv:0808.4048

21. Phase behavior of a fluid with competing attractive and repulsive interactions
A.J. Archer, and N.B. Wilding, Phys. Rev. E 76, 031501 (2007).
PRE link, arXiv:0706.0618

20. Dynamics in inhomogeneous liquids and glasses via the test particle limit
A.J. Archer, P. Hopkins and M. Schmidt, Phys. Rev. E 75, 040501 (2007).
PRE link, cond-mat/0609663

19. A model colloidal fluid with competing interactions: bulk and interfacial properties
A.J. Archer, D. Pini, R. Evans and L. Reatto, J. Chem. Phys. 126, 014104 (2007).
JCP link, cond-mat/0610257

18. Screening in Yukawa fluid mixtures
A.J. Archer, P. Hopkins and R. Evans, Phys. Rev. E 74, 010402 (2006).
PRE link, cond-mat/0606718

17. Dynamical density functional theory for dense atomic liquids
A.J. Archer, J. Phys.: Condens. Matter 18, 5617 (2006).
JPCM link, cond-mat/0604568

16. Structure, phase behavior, and inhomogeneous fluid properties of binary dendrimer mixtures
I.O. Götze, A.J. Archer and C.N. Likos, J. Chem. Phys. 124, 084901 (2006).
JCP link, cond-mat/0511605

15. Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel
A.J. Archer, M. Schmidt and R. Evans, Phys. Rev. E 73, 011506 (2006).
PRE link, cond-mat/0512386

14. Pair correlation functions and phase separation in a two component point Yukawa fluid
P. Hopkins, A.J. Archer and R. Evans, J. Chem. Phys. 124, 054503 (2006).
JCP link, cond-mat/0512393

13. Dynamical density functional theory: phase separation in a cavity and the influence of symmetry
A.J. Archer, J. Phys.: Condens. Matter 17, S3253 (2005) - Procedings of 6th LMC.
JPCM link, cond-mat/0509135

12. Density functional theory for the freezing of soft-core fluids
A.J. Archer, Phys. Rev. E 72, 051501 (2005).
PRE link, cond-mat/0511279

11. Dynamical density functional theory: binary phase-separating colloidal fluid in a cavity
A.J. Archer, J. Phys.: Condens. Matter 17, 1405 (2005).
JPCM link, cond-mat/0502658

10. Solvent mediated interactions close to fluid-fluid phase separation: microscopic treatment of bridging in a soft core fluid
A.J. Archer, R. Evans, R. Roth and M. Oettel, J. Chem. Phys. 122, 084513 (2005).
JCP link, cond-mat/0411557

9. Asymptotic decay of pair correlations in a Yukawa fluid
P. Hopkins, A.J. Archer and R. Evans, Phys. Rev. E 71, 027401 (2005).
PRE link, cond-mat/0512391

8. Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic?
A.J. Archer and M. Rauscher, J.Phys. A: Math. Gen. 37, 9325 (2004).
JPhysA link, cond-mat/0405603

7. Dynamical density functional theory and its application to spinodal decomposition
A.J. Archer and R. Evans, J. Chem. Phys. 121, 4246 (2004).
JCP link, cond-mat/0405665

6. Soft core binary fluid exhibiting a lambda-line and freezing to a highly delocalised crystal
A.J. Archer, C.N. Likos and R. Evans, J.Phys.: Cond. Matter 16, L297 (2004).
JPCM link

PhD Thesis: Statistical Mechanics of Soft Core fluid Mixtures
A.J. Archer, PhD thesis, University of Bristol (2003).
pdf Thesis

5. Solvent-mediated interactions and solvation close to fluid-fluid phase separation: A density functional treatment
A.J. Archer and R. Evans, J. Chem. Phys. 118, 9726 (2003).
JCP link

4. Binary star-polymer solutions: bulk and interfacial properties
A.J. Archer, C.N. Likos and R. Evans, J.Phys.: Cond. Matter 14, 12031 (2002).
JPCM link

3. Microscopic theory of solvent mediated long range forces: influence of wetting
A.J. Archer, R. Evans and R. Roth, Europhys. Lett. 59, 526 (2002).
EPL link, cond-mat/0205477

2. Wetting in the Binary Gaussian Core Model
A.J. Archer and R. Evans, J.Phys.: Cond. Matter 14, 1131 (2002).
JPCM link

1. The Binary Gaussian Core Model: Fluid-Fluid Phase Separation and Interfacial Properties
A.J. Archer and R. Evans, Phys. Rev. E 64, 041501 (2001).
PRE link

Last updated: 19 July 2018

I teach 50% of each of the modules:

  • MAP111 - Mathematical Modelling 1
  • MAP211 - Mathematical Modelling 2