Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
Loughborough University

Programme Specifications

Programme Specification

MSc Advanced Manufacturing Engineering and Management

Academic Year: 2020/21

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution Loughborough University
Teaching institution (if different)
Owning school/department Wolfson School of Mechanical, Electrical and Manufacturing Engineering
Details of accreditation by a professional/statutory body

Institution of Engineering and Technology (IET)

Institution of Engineering Designers (IED)

Institution of Mechanical Engineers (IMechE)

Final award MSc/ PGDip / PGCert
Programme title Advanced Manufacturing Engineering and Management
Programme code WSPT01 (Full-Time) & WSPT51 (Part-Time)
Length of programme 1 year for full-time and 3 years (typically) for part-time. Maximum period of part-time study is 6 years.
UCAS code
Admissions criteria

MSc Full time: http://www.lboro.ac.uk/WSPT01

MSc Part time: http://www.lboro.ac.uk/WSPT51

Date at which the programme specification was published Wed, 30 Sep 2020 10:08:37 BST

1. Programme Aims

The Masters of Science in Advanced Manufacturing Engineering and Management aims to develop students’ education and experience in the field of advanced manufacturing technologies and management techniques, providing the basis for their effective careers as accountable technologists and managers who can meet the challenges of rapidly changing global manufacturing industries.

The programme aims to:

  • Deliver advanced core subjects in manufacturing processes, technologies and management which underpin a career with significant responsibility in manufacturing industries and related research
  • Provide opportunities for students to develop both a deep and broad understanding of advanced manufacturing through integration of core subjects, and state of the art facilities, enabling graduates to attain multidisciplinary skills critical for manufacturing environments.


2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

  • UK Standard for Professional Engineering Competence; Engineering Technician, Incorporated Engineer and Chartered Engineer Standard, Engineering Council UK, 2013.

  • UK Standard for Professional Engineering Competence; The Accreditation of Higher Education Programmes, Engineering Council UK, 2013.

  • Subject Benchmark Statement: Engineering, The Quality Assurance Agency for Higher Education, October 2019.

  • Master's degree characteristics, the Quality Assurance Agency for Higher Education, September 2015.

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of this programme, students should be able to demonstrate comprehensive knowledge and understanding of:

K1 The phases and activities essential to successful engineering projects;

K2 Principles of new product development and the relationships between design, manufacturing, environment and commerce;

K3 Resource conservation, sustainable development and design in a manufacturing context;

K4 The concepts and principles behind the various Additive Manufacturing processes as per the ASTM F42 standards;

K5 Biological systems and the technology needed for their manufacture

K6 Analysis and optimisation of laser processing; the behaviour of polymers, ceramics and metals when incident with various energy beams;

K7 Principles and component of advanced automation and robotic systems, along with their industrial applications;

K8 Manufacturing management and business practices including finance, accounting, law and quality;

K9 Environmental legislation and management in a company context;

K10 The lean and agile manufacturing philosophies and the distinction between their operations;

K11 Appropriate modelling techniques for manufacturing systems accounting for physical, process and organisational aspects;

K12 Identification of integration issues within manufacturing systems, and ability to deal with these challenges. 

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme, students should be able to:

C1 Demonstrate awareness of the principles of creativity and project planning in multidisciplinary manufacturing environments;

C2 Produce solutions to manufacturing-related problems through the application of engineering knowledge and understanding;

C3 Analyse the principles of the various Additive Manufacturing technologies and their influence on product development;

C4 Understand the opportunities and limitations faced by manufacturing engineers in biological product development;

C5 Identify suitable applications for each advanced manufacturing process, and assess their advantages and disadvantages;

C6 Evaluate commercial risk, make decisions based on available information using judgement and reasoning;

C7 Specify and design an appropriate lean or agile business system;

C8 Propose and justify methods for the integration of manufacturing processes within a higher level manufacturing system based on required information flows. 

b. Subject-specific practical skills:

On successful completion of this programme, students should be able to:

P1 Use the design or innovation process as a basis for planning and carrying out manufacturing-related projects and for structuring project reports;

P2 Apply engineering techniques taking account of industrial and commercial constraints;

P3 Critically evaluate feasibility of manufacturing a biological product, recognizing needs for safety and containment;

P4 Determine the correct operating parameters for a variety of manufacturing processes;

P5 Plan and organise engineering activities for improved company effectiveness;

P6 Integrate lean and agile approaches with other systems - such as OPT, PBC or reflective manufacture;

P7 Given the required product/component attributes, propose and justify the key elements of an appropriate manufacturing system. 

c. Key transferable skills:

On successful completion of this programme, students should be able to:

T1 Plan and monitor multi-disciplinary projects, identifying the factors that influence commercial success;

T2 Solve general problems through systematic analysis and design methods.  Critically assess given information, make value judgements about it, and use it in the solution of an unfamiliar problem;

T3 Understand how Additive Manufacturing can be applied in different manufacturing industries;

T4 Comprehensively communicate with diverse set of audiences, including clinicians and life scientists concerning their needs and manufacturing capability;

T5 Ability to develop new advanced manufacturing processes and/or automation systems to solve current production challenges;

T6 Present a comprehensive case for the selection of an appropriate lean or agile system;

T7 Present logical reasoned arguments and communicate ideas clearly and concisely;

T8 Solve engineering and wider manufacturing-related problems;

T9 Manage time and resources;

T10 Manipulate and sort data, present data in technical reports, present and effectively communicate at an advanced and specialised level.

4. Programme structure

The following tables list the modules that comprise the programme. Students have the choice to select one optional module in semester two.

Semester 1

Compulsory modules (60 credits)

WSP233 Lean & Agile Manufacture 15
WSP409 Engineering for Sustainable Development 15
WSP438 Innovation Process & Entrepreneurship in Engineering 15
WSP637 Additive Manufacturing 15

Semester 2

Compulsory modules (45 credits)

WSP237 Engineering Management & Business Studies 15
WSP600 Manufacturing Processes & Automation 15
WSP840 Biological Manufacturing 15

Optional modules (Students should select modules totalling 15 credits)

WSP434 Product Design and Human Factors 15
WSP076 Modelling, Simulation and Visualization for Engineering 15

Project (60 credits)

The taught modules are normally prerequisites for the Project module, which is an individual project under the direction of a supervisor.

WSP501 Major Project (Full-Time)                                         60
WSP504 Major Project (Part-Time) 60

All module choice is subject to availability, timetabling, student number restrictions and students having taken appropriate pre-requisite modules.

5. Criteria for Progression and Degree Award

5.1 In order to be eligible for the award, candidates must satisfy the requirements of Regulation XXI.

In addition:

  • To meet PSRB requirements students must achieve a minimum of 150 credits with the remaining modules achieving a mark no lower than 40%.
  • To be eligible for the award of Postgraduate Certificate, candidates must have accumulated at least 60 credits excluding the Major Project module (WSP501/WSP504)

5.2 Provision will be made in accordance with Regulation XXI for candidates who have the right of re-examination to undergo re-assessment in the University’s special assessment period.

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at Loughborough University, including course information, facilities, and student experience.

Find out more »

How to print a programme specification:

1. Select programme specification
2. Save specification as a PDF
3. Print PDF