Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
Loughborough University

Programme Specifications

Programme Specification

BEng (Hons) Manufacturing Engineering (Students Undertaking Part A in 2020)

Academic Year: 2020/21

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution Loughborough University
Teaching institution (if different)
Owning school/department Wolfson School of Mechanical, Electrical and Manufacturing Engineering
Details of accreditation by a professional/statutory body

Institution of Engineering and Technology (IET)
Institution of Mechanical Engineers (IMechE)

Final award BEng/ BEng +DIS /BEng + DIntS/ BEng + DPS
Programme title Manufacturing Engineering
Programme code WSUB01
Length of programme The duration of the programme is 6 semesters, or 8 semesters if taken with the Diploma in Industrial Studies (DIS), Diploma in Professional Studies (DPS) or Diploma of International Studies (DIntS) The programme is only available on a full-time basis.
UCAS code H710/HH1T
Admissions criteria



Date at which the programme specification was published Wed, 30 Sep 2020 09:47:14 BST

1. Programme Aims

The overall aim of this programme is to develop students with core knowledge, skills and attributes able to work effectively and progress rapidly in manufacturing industries. This is undertaken through taught courses that cover the essential engineering and management disciplines supported by practical and transferable skills development.

Specific aims are:    

•      A1.   To produce engineering graduates ready to play a substantial role in manufacturing companies through a combination of technical, commercial and social awareness.

•      A2.   To provide a foundation for graduates wishing to progress to professional engineering status.

•      A3.   To deliver core subjects in engineering science, mathematics, manufacturing processes and technologies that underpin a career in manufacturing engineering.

•      A4.   To provide a high quality educational experience for students in a programme of study which combines wide ranging aspects of manufacturing technologies, manufacturing management, design for manufacture and engineering design

•      A5.   To develop analytical and transferable skills that will enable graduates to solve problems individually and in teams, and gain employment in a wide variety of professions, and thereby make a valuable contribution to society and wealth creation.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

  • UK Quality Assurance Agency for Higher Education (QAA) – ‘Subject Benchmark Statement for Engineering’, (Oct. 2019). 
  • Engineering Council (UK). ‘UK-SPEC, UK Standard for Professional Engineering Competence’, 3rd Edition, Jan.2014. 
  • Engineering Council (UK). ‘The Accreditation of Higher Education Programmes’, 3rd Edition, May 2014. 

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of this programme, students should be able to demonstrate knowledge and understanding of:

  • K1.   The underpinning science, mathematics and other disciplines associated with a career in manufacturing engineering;
  • K2.   Engineering principles, quantitative methods, mathematical and computer models;
  • K3.   Codes of practice, industry standards and quality issues applicable to a career in manufacturing engineering;
  • K4.   Management techniques to organise manufacturing engineering activities and an understanding of the commercial and economic context of an engineering business;
  • K5.   The importance of sustainable development, legal, ethical and intellectual property issues within the modern industrial world;
  • K6.   The characteristics of engineering materials, manufacturing processes and technologies.

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme, students should be able to:

  • C1.   Identify a manufacturing related problem, evaluate its requirements and generate innovative solutions that consider a range of constraints including production capabilities, sustainability and economics;
  • C2.   Apply appropriate methods (including analytical and computational methods) to model and assess such solutions;
  • C3.   Apply mathematical and scientific methods to the analysis of manufacturing related problems making appropriate allowance for uncertainty in the available data;
  • C4.   Appreciate the role and constraints of engineers in other disciplines.
b. Subject-specific practical skills:

On successful completion of this programme, students should be able to:

  • P1.   Use appropriate computer software and computational techniques;
  • P2.   Use appropriate laboratory and mechanical workshop equipment competently and safely;
  • P3.   Research information relating to manufacturing technologies and their management;
  • P4.   Prepare engineering drawings and technical reports and give technical presentations;
  • P5.   Demonstrate organisational and management skills.
c. Key transferable skills:

On successful completion of this programme, students should be able to:

  • T1.   Apply creative and structured approaches to problem solving;
  • T2.   Gather and collate key technical information from a range of sources;
  • T3.   Communicate effectively through written, graphical, interpersonal and presentation skills;
  • T4.   Operate and apply a range of computer based information systems;
  • T5.   Monitor and adjust a personal programme of work on an on-going basis and learn independently;
  • T6.   Work in a team and understand the different roles;
  • T7.   Structure, plan and manage individual and group projects and activities.

4. Programme structure

4.1    Part A - Introductory Modules

Semester 1 and 2

Compulsory Modules (80 credits)

Code Title Credits
MAA306 Mathematics for Manufacturing Engineering (Sem 1: 10 credits; Sem 2: 10 credits) 20
WSA102 Engineering Science 1 (Sem 1: 10 credits; Sem 2: 10 credits) 20
WSA505 Integrating Studies (Sem1 10 credits; Sem 2: 10 credits) 20
WSA604 Materials & Manufacturing Processes (Sem 1: 10 credits; Sem 2: 10 credits) 20

Semester 1

Compulsory Modules (20 credits)

Code Title Credits
WSA400 Application of CAD for Engineering Designers 10
WSA610 Manufacturing Technology 10

 Semester 2

Compulsory Modules (20 credits)

Code Title Credits
WSA210 Manufacturing Management 10
WSA900 Electronics and Electrical Technology 1 10


4.2 Part B  - Degree Modules

 Semester 1 and 2

Compulsory Modules (40 credits)

Code Title Credits
WSB501 Integrating Studies (Sem 1: 10 credits; Sem 2: 10 credits) 20
WSB600 Manufacturing Process Technology (Sem 1: 10 credits; Sem 2: 10 credits) 20

Semester 1

Compulsory Modules (40 credits)

Code Title Credits
WSB112 Engineering Science 2 10
WSB310 Engineering and Management Modelling  10
WSB201 Digital Manufacturing and Discrete Event Simulation 10
WSB505 Manufacturing Design 10

 Semester 2

Compulsory Modules (40 credits)

Code Title Credits
MAB206 Statistics 10

Manufacturing Planning and Control

WSB301 Software Engineering 10
WSB413 Machine Design 10


4.3    Part I – Optional Placement Year


Code Title
WSI010 Diploma in Industrial Studies (DIS) (non-credit bearing)
WSI020 Diploma in Professional Studies (DPS) (non-credit bearing)
WSI035 Diploma in International Studies (DIntS) (non-credit bearing)


For candidates who are registered for the Diploma in Industrial Studies (DIS), Diploma in Professional Studies (DPS) or Diploma in International Studies (DintS), Part I will be followed between Parts B and C and will be in accordance with the provisions of Regulation XI and Regulation XX.


4.4 Part C - Degree Modules  

Students MUST choose 10 credits of options in Semester One and 30 credits in Semester Two.

One Module (10 credits) must be selected from Group A.

Three modules (30 credits) must be selected from Groups B, C and D with no more than ONE module from each group.

Semester 1 and 2 

Compulsory Modules (50 credits)

Code Title Credits
WSC500 Individual Project (Sem 1: 20 credits; Sem 2: 20 credits) 40

Semester 1

Compulsory Modules  (20 credits)

Code Title Weight
WSC200 Engineering Management: Finance, Law and Quality 10
WSC600 Advanced Manufacturing Processes and Technology 1 10
WSC407 Sustainable Product Lifecycle Engineering 10

Optional Modules 

Students should select modules totalling 10 credits

Group A


Code Title Credits
WSC201 Oganisation Structure & Strategy 10
WSC606 Additive Manufacturing for Product Development 10
WSC108 Manufacturing Automation and Control 10

Semester 2

Compulsory Modules  (10 credits)

Code Title Credits
WSD203 Lean Operations and Supply Chain Management 10

Optional Modules (students should select modules totalling 30 credits)

Group B

Code Title Credits
WSC206 Product Innovation Management 10
WSC300 Advanced Computer Aided Design 10

Group C

Code Title Credits
WSC603 Metrology 10
WSC911 Industrial Machine Vision 10

Group D

Code Title Credits
WSC610 Healthcare Engineering 10
WSC700 Sports Engineering 10
WSC106 Finite Element Analysis 10
MPC012 Polymer Engineering - Processing and Manufacture 10

All module choice is subject to availability, timetabling, student number restrictions and students having taken appropriate pre-requisite modules.

4.5  Studies Overseas

Students may choose to study Part C - Semester One at an approved Overseas Higher Education Institution.  The Mix of subjects of the learning programme must be approved in advance by the Programme Director.

The proposed programme of learning will normally include work on an individual project with a modular weight of 20 credits.


5. Criteria for Progression and Degree Award

In order to progress from Part A to Part B, and from Part B to Part C and to be eligible for the award of an Honours degree, candidates must satisfy the minimum credit requirements set out in Regulation XX.

To meet PSRB requirements students must achieve a minimum of 100 credits in each part with the remaining modules achieving a mark no lower than 10 percentage points below the usual pass mark.


6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

Candidates’ final degree classification will be determined on the basis of their performance in degree level Module Assessments in Parts B and Part C, in accordance with the scheme set out in Regulation XX.  The overall average percentage marks for each Part will be combined in the ratio Part B 40: Part C 60, to determine the degree classification.

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at Loughborough University, including course information, facilities, and student experience.

Find out more »

How to print a programme specification:

1. Select programme specification
2. Save specification as a PDF
3. Print PDF