Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
Loughborough University

Programme Specifications

Programme Specification

MSc Advanced Engineering

Academic Year: 2014/15

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution Loughborough University
Teaching institution (if different)
Owning school/department Wolfson School of Mechanical and Manufacturing Engineering - pre-2016
Details of accreditation by a professional/statutory body
Final award MSc/ PGDip / PGCert
Programme title Advanced Engineering
Programme code MMPT01
Length of programme This part-time programme is based at Loughborough and is studied over a period of not more than eight years. The programme comprises 120 credits of taught modules and a 60 credit individual project. The maximum period of part-time study for a Diploma is 5 years or 3 years for a Certificate. Each candidate is required to negotiate with the Programme Director a balanced and appropriate combination of modules that takes account of the candidate’s previous experience.
UCAS code
Admissions criteria

http://www.lboro.ac.uk/study/postgraduate/courses/departments/mecheng/advancedengineering/

Date at which the programme specification was published Mon, 08 Sep 2014 15:46:45 BST

1. Programme Aims

  • The aim of the programme is to provide a postgraduate programme to give broadening and deepening modules in a field of engineering relevant to and tailored to each student’s working needs.
  • Postgraduate students are intended to receive appropriate grounding in relevant engineering skills and their practical assessment according to industrial needs.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

Benchmark statements for Engineering.

Industry input to steer programme content and delivery has been through an Industrial Liaison Committee which meets annually.

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of the programme, students should be able to:

  • Demonstrate knowledge and understanding of the capabilities and limitations of modern technology appropriate to a particular industry.
  • Understand capabilities and limitations of computer based methods.

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme, students should be able to:

  • Select appropriate mathematical methods and apply them in complex engineering situations.
  • Use scientific principles to solve unfamiliar engineering problems.
  • Model and analyse complex engineering systems.
  • Undertake independent research under supervision.
  • Apply appropriate engineering management practices.
b. Subject-specific practical skills:

On successful completion of the programme, students should be able to:

  • Demonstrate essential skills such as decision-making processes and other facets of a rational approach to managing complex engineering projects.
  • Apply effectively a wide range of engineering methods.
  • Collect and analyse objective data and draw pertinent conclusions.
  • Select and use appropriate computer based tools.
c. Key transferable skills:

On successful completion of this programme, students should be able to:

  • Generate and analyse data to solve complex engineering problems.
  • Demonstrate a broad understanding of the use of IT tools in engineering.
  • Coordinate presentation techniques and information to maximum effect.
  •  Learn new concepts and communicate them to engineering and non- specialist persons.

4. Programme structure

4.1 Students are required to select taught modules from the list below. Students are responsible for consulting with the programme administrator to ensure their selected modules do not clash. Modules denoted by * are provided through distance learning. All other modules are taught in one-week blocks.

 

Module Code
Title
Module Weight

School  of Electronic & Electrical Engineering 

ELP006

Fundamentals of Digital Signal Processing

15

ELP008

Digital Signal Processing for Software Radio

15

ELP009

Communication Networks                     

15

ELP010

Personal Radio Communications           

15

ELP011

Information Theory and Coding

15

ELP013

Quality Aware Networks

15

ELP015

Communications Channels        

15

ELP016

Communication Network Security and E-Commerce

15

ELP017

Mobile Networks

15

ELP032

Integration of Renewables                     

15

ELP033

Solar Power 1                                      

15

ELP034

Wind Power 1                                       

15

ELP035

Water Power                                        

15

ELP036

BioMass                                              

15

ELP062

Systems Thinking

15

ELP066

Systems Design

15

ELP067

Validation and Verification

15

ELP069

Innovation and Entrepreneurship for Engineers

15

ELP460

Engineering and Management of Capability

15

 

WolfsonSchool of Mechanical & Manufacturing Engineering

MMP102

Experimental Mechanics

15

MMP103

S   Simulation of Advanced Materials & Processes

15

MMP104

A   Automation & Virtual Engineering

15

MMP130

S   Structural Analysis

15

MMP233

     Lean and Agile Manufacture                 

15

MMP205*

Lean and Agile Manufacture                  

10

MMP237

Engineering Management & Business Studies

15

MMP250*

Marketing for Engineers

10

MMP256*

Quality Management

10

MMP260*

Business Strategy                                

10

MMP263*

Operations Management

10

MMP330

Product Information Systems - Product Lifecycle Management

15

MMP331

Computer Aided Engineering                

15

MMP403*

Design of Machine Elements

10

MMP405

Engineering Design Methods

15

MMP409

Sustainable Development: The Engineering Context

15

MMP420

Lifecycle Assessment

15

MMP421

Environmental Management Standards, Legislation & Directives

15

MMP422

Waste Management & Product Recovery

15

MMP423

Sustainable Energy Systems

15

MMP434

Product Design and Human Factors

15

MMP437

Sustainable Product Design

15

MMP438

The Innovation Process & Project Management

15

MMP455*

Engineering Design Methods

10

MMP460*

Design for Assembly

10

MMP600

Adv Manufacturing Processes & Technology

15

MMP637

Additive Manufacturing

15

MMP660*

Adv Manufacturing Processes & Technology

10

MMP830

Thermofluids

15

Department of Materials

MPP505

Plastics Processing Technology

15

MPP507

Polymer Characterisation

15

MPP508

Rubber Compounding and Processing

15

MPP558

Sustainable Use of Materials

15

MPP559

Adhesive Bonding

15

MPP608*

Rubber Compounding and Processing

15

MPP658*

Sustainable Use of Materials

15

MPP601*

Polymer Properties

15

MPP602*

Polymer Science

15

MPP603*

Polymerisation and Polymer Blends

15

MPP606*

Plastics and Composites Applications

15

MPP652*

Design with Engineering Materials

15

MPP653*

Surface Engineering

15

MPP654*

Ceramics: Processing and Properties

15

MPP655*

Metals: Processing and Properties

15

MPP660*

Marketing

15

* denotes module studied through distance learning.

The School reserves the right to offer or withdraw any module or amend the list of modules. Not all modules may be available in any one session. Students may take any other modules from the University’s postgraduate catalogue of modules subject to their availability and the agreement of the Programme Director. 

4.2          MSc Project Module

All part-time students take project module MMP504. Project submission should normally be within three years of registration on the project module. 

Code

Subject

Modular Weight

MMP504

Major Project (part-time)

60

 

5. Criteria for Progression and Degree Award

5.1 In order to be eligible for the award, candidates must satisfy the requirements of Regulation XXI.

5.2 Candidates who have the right of re-assessment in a module may be offered an opportunity to be re-assessed in the University's special assessment period.

 

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at Loughborough University, including course information, facilities, and student experience.

Find out more »

How to print a programme specification:

1. Select programme specification
2. Save specification as a PDF
3. Print PDF