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 The high bar is one of six pieces of equipment used in Men’s Artistic 
Gymnastics.  The basic movement in competitive routines is the giant circle in which 
the gymnast tries to remain extended in the handstand position whilst circling the bar 
(Figure 1).  The mechanics of this movement can be explained using simple models 
of the gymnast and the bar. 

 
Figure 1.  The backward giant circle on high bar. The gymnast circles from the 

handstand position above the bar in the anticlockwise direction. 
 

Conservation of energy 
 Energy loses while circling the bar occur due to the friction between the hands 
and the bar but are relatively small.  To a first approximation we can model the 
gymnast as a rigid rod swinging around a frictionless inelastic bar.  The rigid rod is 
given a mass m, has its mass centre a distance r from the bar and has moments of 
inertia about the bar and its mass centre (I and IG, respectively) similar to those of a 
gymnast in a handstand position.  If the model is given an initial angular velocity ω0 
the angular velocity as the gymnast passes beneath the bar ω1 may be calculated.  
Taking the acceleration due to gravity as g: 
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 work done by gravity = gain in kinetic energy 
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of Parallel Axes) 
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Figure 2.  Single segment rigid model. 



 In the case of starting from a still handstand ω0 = 0 rad.s-1 and taking m = 60 kg, 
g = 9.81 m.s-1, r = 1.0 m and IG = 10 kg.m2 gives ω1 = 5.8 rad.s-1 which is the correct 
order of magnitude although a little larger than measured values. 
 
 The reaction force R exerted on the hands can be calculated at the lowest point 
of the circle using Newton’s Second Law: 
 
  R – mg = mrω1

2 

 
Here the term rω1

2 is the centripetal acceleration towards the centre of the circle 
described by the mass centre.  Thus 
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In other words the reaction force at the bar is in excess of 5mg which is somewhat 
larger than measured values. 
 
 
Elastic bar 
 In the previous analysis it was assumed that the bar was inelastic.  In practice 
the 28 mm diameter steel bars used by gymnasts deform by around 0.1 m at the 
lowest point of a giant circle. 
 Suppose that the bar deforms by a distance h during the downswing.  If the 
initial angular velocity is zero at the highest point the reaction force on the bar is R = 
mg acting downwards.  Suppose that this depresses the bar downwards through a 
distance d1 from the neutral bar position.  At the lowest point the downwards force on 
the bar will be  

R = mg + m(r + d2)ω2
2 

where d2 is the depression from the neutral bar position. 
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             strain energy = mean force x distance 
 
                                   = ½[2mg + m(r + d2)ω2

2][d2 – d1] 
 
work done by gravity = gain in kinetic and strain energies 
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Figure 3. Single segment elastic model. 



 
Suppose we estimate d1 = 0.02 m and d2 = 0.10 m.  This gives ω2 = 5.6 rad.s-1 and R 
= 4.5 mg at the lowest point.  These values are closer to the actual values of ω = 5.0 
rads-1 and R = 3.3 mg than previous analysis with a rigid bar.  Further improvement 
can be using an elastic model of the gymnast since gymnasts stretch by 0.15 m 
during a giant circle. 
 
 
 
Weightless 
 Prior to a dismount the gymnast uses accelerated giant circles to build up 
angular velocity around the bar.  This means that at the highest point the angular 
velocity can be quite large.  If the angular velocity is large enough the gymnast will be 
“weightless” at the highest point.  In other words the centripetal force is provided by 
the weight.  
 
Newton’s Second Law 
 mg – R = mrω0

2 

When R = 0 :  mg = mrω0
2 and g0 =ω  = 3.13 rad.s-1   

This compares with a value of 2.5 rad.s-1 from an actual performance. 
 
Accelerated circles 
 In order to increase the angular velocity in successive giant circles it is 
necessary to put energy into the system.  A simple point mass model was used by 
Bauer (1983) to explain how this can be done (Figure 4).  The model assumes that 
the gymnast flexes instantaneously at the lowest point.  By flexing the gymnast raises 
his mass centre and reduces the moment of inertia about the bar.  The increase in 
energy due to flexing may be calculated from the increase in potential and kinetic 
energy.  Using the same numbers as those in the first example, if the mass centre is 
raised 0.10 m at the lowest point and the moment of inertia about the bar is reduced 
to 60 kg.m2 from 70 kg.m2: 
 

increase in potential energy = mgh = 60 x 9.81 x 0.10 = 58.9 
Joules 
 
increase in angular velocity (conservation of angular momentum) 
 I1ω1 = I2 ω2 
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increase in kinetic energy = ½ I2 ω2

2 - ½ I1ω1
2 = 209.9 Joules 

 
total increase in energy = increase in potential energy + increase 
in kinetic energy = 268.7 J 
 
 

 
Figure 4.  Bauer’s (1983) point mass model of a gymnast performing backward giant 
circles. 



Once the gymnast reaches the highest point an extension is performed.  Again the 
potential energy is increased by raising the mass centre, although, the kinetic energy 
is reduced slightly due to the increase in moment of inertia about the bar.  If the net 
increase in potential and kinetic energy during these actions is greater than the loss 
of energy due to friction, the gymnast will complete the giant circle with more kinetic 
energy and hence more angular velocity than he started with. 
 
 The same point mass model may used to describe the basic technique of the 
backward giant circle from the perspective of the torque created by the gymnast’s 
weight.  During the downswing the gymnast remains extended so as to maximise the 
effect of the torque, which increases the gymnast’s angular velocity about the bar.  
During the upswing the torque created by the gymnast’s weight slows the gymnast’s 
angular velocity.  To reduce the effect of the torque during the upswing the gymnast 
closes his hip and shoulder angles reducing the moment arm of the weight and 
hence the torque itself (Figure 5). 
  

 
Figure 5.  By moving the mass centre closer to the bar during the upswing the 

gymnast reduces the effect of the torque tending to reduce his angular 
velocity. 

 
Timing the flexion and extension 
 According to Bauer’s model the gymnast should flex and extend 
instantaneously at the lowest and highest points, respectively.  In practice gymnasts 
flex after the lowest point and extend before they reach the highest point (Figure 1).  
Why is this the case?  
 A real gymnast comprises many segments, such as the arms, the torso and 
legs, which have their own moments of inertia.  For the gymnast to change the 
angles between these segments he must exert joint torques.  Suppose the gymnast 
was modelled using two rigid segments, the arms and torso forming one segment 
and the legs the other.  As the model swings from the handstand position a joint 
torque tending to close the hip joint (hip flexor torque) is required to maintain an 
extended body shape.  If there were no torque at the hip during the downswing the 
hip angle would open (hyper-extension at the hip).  However, during the upswing a 
torque tending to open the hip angle (hip extensor torque) is now required to maintain 
an extended body shape.  If during the upswing the torque at the hip were set to zero 
the model would flex at the hip. 
 Consider two hip flexions performed either side of the lowest point of the giant 
circle (Figure 6) with the same change in hip angle performed over the same 
duration.  The flexion action performed before the lowest point will require a larger 
torque than the flexion performed after the lowest point so more concentric work is 
done and there will be a larger increase in energy.  This is because at the lowest 
point the model would tend to close the hip joint if the torque was set to zero and so 
less work is required to produce the angle change.  The reason gymnasts flex after 
the lowest point is due to the size of the joint torques that they are able to exert or 



choose to exert.  There are two possibilities: either the gymnasts are not strong 
enough to flex before the lowest point or they choose to work within themselves. 
 

 
Figure 6.  Two flexion actions performed either side of the lowest point of a giant 

circle. 
 

 The same mechanics apply to the extension that the gymnast performs near the 
highest point.  More concentric work is done by extending before the highest point, 
due to the larger torques that are required.  If the gymnast were unable to exert this 
level of torque he would delay the extension until after the highest point.  However, 
the joint torques involved with the extension are less than those involved with the 
flexion through the lowest point and so the gymnast is able to extend before the 
highest point producing a greater increase in energy. 
 More complex computer simulation models of swinging have been developed 
(Hiley, 1998) and are currently in use to analyse giant circles used by elite gymnasts 
at the Sydney Olympics. 
 
 
Bauer, W.L. (1983). Swinging as a way of increasing the mechanical energy in 

gymnastic manoeuvres. In H. Matsui and K. Kobayashi (Eds.), Biomechanics 
VIII-B. Champaign, IL: Human Kinetics. pp. 801-806. 

Hiley, M.J. (1998).  Mechanics of the giant circle on high bar. Doctoral dissertation. 
Loughborough University. 

 


