Liquid Crystal Displays
-a Technological Revolution

Avtar S Matharu

am537@york.ac.uk
‘A Technological Revolution’
Contents

1. Introduction
 LCDs everywhere, market dominance, TN Display type, definitions, economic factors.

2. Cell assembly
 Backlighting: clarity, luminance.

3. Manufacturing
 Minimising costs, panel size, filling, thinning.

[4. See examples of liquid crystals: both display and non-display]
‘A Technological Revolution’
LCDs - everywhere
‘A Technological Revolution’
- market penetration

Data source: Norman Bardsley, DisplaySearch
‘A Technological Revolution’
LCDs versus CRTs

Benefits:
- Flat panel
- Lightweight
- Low power
- Do not emit harmful radiation

LC requirements (problems):
- Wide operating range, -40°C to +50°C
- Chemical, physical and electro-chemical stability
- Wide viewing angle, contrast, brightness
- Low viscosity
‘A Technological Revolution’
- Not just LCDs
‘A Technological Revolution’ - what are liquid crystals?

Conventional wisdom – 3 states:

- **Gas**
 - Total disorder; much empty space; particles have complete freedom of motion; particles far apart.

- **Liquid**
 - Disorder; particles or clusters of particles are free to move relative to each other; particles close together.

- **Crystalline solid**
 - Ordered arrangement; particles are essentially in fixed positions; particles close together.

A FOURTH STATE!

“Liquid crystals are materials that exhibit an intermediate state of matter that exists between the crystalline and isotropic liquid states”
‘A Technological Revolution’
Twisted Nematic Display

- Front polariser
- Front glass substrate
- ITO layer
- Alignment layer
- Nematic Liquid crystal
- Alignment layer
- ITO layer
- Rear glass substrate
- Rear polariser
- Backlight
‘A Technological Revolution’
Twisted Nematic Display

ON STATE
(DARK)

OFF STATE
(BRIGHT)

0 V

V
‘A Technological Revolution’
New - IPS and VAN

‘A Technological Revolution’
Display Construction

- ANTI GLARE
- LC CELL
 - Polarizer
 - Image Layer
 - Polarizer
 - Diffuser
- COLLIMATION
 - DBEF
 - BEF
- LIGHT SOURCE
 - BEF
 - Diffuser
 - Light guide plane
 - Reflector
‘A Technological Revolution’
Economic considerations

- CLARITY
- POWER
- PORTABILITY
- MATERIALS
- MACHINERY
- PROCESS TIME

COST
‘cut-throat business’
‘A Technological Revolution’
Backlighting types

- LCD cell
- Clear Plastic lightguide
- Point sources emitting sideways into light guide
- Reflective surface
- LCD cell
- Reflective surface
- Line sources
Total Internal Reflection

Dots for extracting light from light guide

Cold Cathode fluorescent lamp (CCFL)

White reflector

Light guide

CCFT Lamp

ESR

3M Enhanced Specular Reflector is a 98.5%, non-metallic specular (mirror-like) reflector
‘A Technological Revolution’
Brightness Enhancement Films

Total Internal Reflection

Diffusely recycled

70°

Refractive - Usable refracted rays are increased 40% - 70%

Low percentage lost

Re-enter next prism

Diffuse Illumination

Diffuse Illumination
‘A Technological Revolution’
Backlighting - integrated

‘A Technological Revolution’
Backlighting losses

Backlight
100% of light

Display with active pixel areas
<100% of light available passes through pixel areas
‘A Technological Revolution’
Backlighting losses

Actual size of active pixel area (overlap of upper and lower electrodes)

Actual size of pixel to pixel gap

Aperture% = active pixel area / actual pixel area

Aperture of typical (pixellated) passive LCD = 90 - 95%

Aperture of typical AM TFT LCD ~ 35 - 65%
‘A Technological Revolution’

Polariser losses

Commercial grade \(\sim < 48\%\) transmission

Extended grade \(\sim < 40-45\%\) transmission
‘A Technological Revolution’
Colour Filter losses

Monochrome display
White = 100% L_{BL}

Colour display
White = 33% L_{int}
Mother glass preparation

- Glass substrates coated with Indium Tin Oxide (ITO). Resistivity in the range of 10 – 125 Ohm sq.
- Substrate thickness ranges from 0.3 to 1.1 mm.
- Soda lime or Borosilicate

Generation 1 = 320 x 400
Gen 2 = 370 x 470
Gen 2.5 = 400 x 500
Gen 3 = 550 x 650
Gen 3.25 = 620 x 750
Gen 3.5 = 650 x 830
Gen 4 = 730 x 920
Gen 5 = 1100 x 1250
Gen 6 (2003) = 1500 x 1800
Gen 7 (2004) = 1800 x 2100
Gen 8 (2006) = 2160 x 2460 (0.7 mm thick!!)
‘A Technological Revolution’
Putting it together

Pre-cleaning

- Use detergent and ultrasonic baths to remove oil and particles on the substrate surface

Mother glass
Preparation

Pre-Cleaning
ITO Patterning

- **Photo-resist coating**
- Coat a photo-resist layer on the substrate surface
- Thickness of PR at ~1.2 um
- Offset printer spin-coat techniques used

‘A Technological Revolution’ Putting it together
ITO Patterning

- **Photolithography**
- The UV exposure time depends on the resolution, usually at around 10 to 20 sec.
‘A Technological Revolution’
Putting it together

ITO Etching
- Etch the ITO pattern by using strong acid
- Control bath temperature to control the etching rate
- The etching time depends on the ITO layer thickness
‘A Technological Revolution’ Putting it together

- Polyimide alignment layer
- PI offset printed coating or spin coated
- Coat the patterned or coated PI layer on the mother glass
- Cure under high temperature for around 3 hours

Mother glass
Preparing

Pre-Cleaning

Photo Resist Coating

UV Exposure

Developing

ITO Etching

Final cleaning

PI offset coating
‘A Technological Revolution’
Maximising yield - coatings

Spin coating

No tooling = cheap process

Offset lithographic printing

Tooling required
more expensive process
‘A Technological Revolution’
Maximising yield - coatings
‘A Technological Revolution’ Putting it together

Buffing (Rubbing)

- Determine the buffing direction of display which determines the LC twist angle
- Rub the PI layer using Wool, Nylon or Rayon
‘A Technological Revolution’
Putting it together

Perimeter seal, conductive dot screen printing, spacer filling

- Mother glass Preparing
- Pre-Cleaning
- Photo Resist Coating
- UV Exposure
- Developing
- ITO Etching
- Final cleaning
 - Spacer spraying
 - Main seal screen printing
 - Buffing
 - PI offset coating
‘A Technological Revolution’
Maximising yield - sealants

Spin process

Off set litho print process

Epoxy seal rests on dielectric = low strength, poor reliability, low lifetime but CHEAP

Epoxy seal on glass or metal = high strength, good reliability, long lifetime but MORE EXPENSIVE
‘A Technological Revolution’
Putting it together

- Coupleing and Vac pack
- Sealed
- Plastic Bag
- Mother glass Preparing
- Pre-Cleaning
- Photo Resist Coating
- UV Exposure
- Developing
- ITO Etching
- Final cleaning
- Vacuum pack
- Coupling
- Spacer spraying
- Main seal screen printing
- Buffing
- PI offset coating
‘A Technological Revolution’
Maximising yield - filling

Full Size Substrate → LC Drop → VAC, Alignment
ATM, Press UV Curing → Alignment & Press → Cutting

30 inch Panel 5 MINS!

30 inch Panel 5 DAYS!
‘A Technological Revolution’
Maximising yield - glass

25% more per panel

x4 rows

x5 rows
‘A Technological Revolution’
Maximising yield - Electronics

Wire on Array and Chip on Glass Technology
‘A Technological Revolution’
Maximising yield

- Glass weight
- Spacer Technology
- Rubbing direction and alignment layers
- Backlight optimisation
‘A Technological Revolution’
Acknowledgements

Chris Williams, Logystyx UK, for the use of slides on LCD manufacturing and backlighting

Rob Bennett, 3M Optical Systems, for the use of slides on backlighting, BEFS.