New organic semiconductor based sensors for nitro compounds

Robert Blue, Zuzana Vobecká, Peter Skabara, Deepak Uttamchandani
To fabricate and experimentally evaluate micro sensors designed for detecting explosives (through vapours)

- Synthesise nitro-sensitive receptor monomers
- Controllably grow the polymers on the micro fabricated sensor using electropolymerisation
- Electrical properties of polymer changes reversibly in presence of target compound – detected by the sensor
Explosives Detection

- **Requirements:**
 - miniaturized (portable/wearable) sensors
 - low-cost
 - fast response times
 - wireless, networked

- **Applications**
 - transport hubs
 - sports arenas
 - shopping malls,...
Classification of Explosives

<table>
<thead>
<tr>
<th>Compound class</th>
<th>Example</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic nitro (C-NO₂)</td>
<td>Nitromethane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrazine nitrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3-dimethyl-2,3-dinitrobutane</td>
<td>DMNB</td>
</tr>
<tr>
<td>Aromatic nitro (C-NO₂)</td>
<td>Nitrotoluene</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>2,4,6-trinitrotoluene</td>
<td>TNT</td>
</tr>
<tr>
<td></td>
<td>2,4-dinitrotoluene</td>
<td>DNT</td>
</tr>
<tr>
<td></td>
<td>2,4,6-trinitrophenol (Picric acid)</td>
<td>TNP</td>
</tr>
<tr>
<td>Nitrate ester (C-O-NO₂)</td>
<td>Nitroglycerine</td>
<td>NG</td>
</tr>
<tr>
<td></td>
<td>Ethylene glycol dinitrate</td>
<td>EGDN</td>
</tr>
<tr>
<td></td>
<td>Pentaerythritol tetranitrate</td>
<td>PETN</td>
</tr>
<tr>
<td></td>
<td>Nitrocellulose</td>
<td></td>
</tr>
<tr>
<td>Nitramines (C-N-NO₂)</td>
<td>Trinitro-triazacyclohexene</td>
<td>RDX</td>
</tr>
<tr>
<td></td>
<td>Tetranitro-tetrazacyclooctane</td>
<td></td>
</tr>
</tbody>
</table>
Classification of Explosives

<table>
<thead>
<tr>
<th>Compound class</th>
<th>Example</th>
<th>Symbol</th>
</tr>
</thead>
</table>
| Aliphatic nitro (C-NO₂) | Nitromethane
Hydrazine nitrate
2,3-dimethyl-2,3-dinitrobutane | DMNB |
| Aromatic nitro (C-NO₂) | Nitrotoluene
2,4,6-trinitrotoluene
2,4-dinitrotoluene
2,4,6-trinitrophenol (Picric acid) | NT
TNT
DNT
TNP |
| Nitrate ester (C-O-NO₂) | Nitroglycerine
Ethylene glycol dinitrate
Pentaerythritol tetranitrate
Nitrocellulose | NG
EGDN
PETN |
| Nitramines (C-N-NO₂) | Trinitro-triazacyclohexene
Tetranitro-tetrazacyclooctane | RDX |

Laboratory Testing:

- Nitrotoluene
- Nitrobenzene
- Nitropropane
Explosives Detection

Methods applied
- Spectroscopic methods: ion-mobility spectroscopy (IMS), MS, GC
- Metal detectors
- X-ray dispersion, Terahertz imaging
Explosives Detection

Methods applied
- Spectroscopic methods: ion-mobility spectroscopy (IMS), MS, GC
- Metal detectors
- X-ray dispersion, Terahertz imaging
- Trained canine teams
Miniaturising Explosive Sensors – Current Research

Mass sensors
Miniaturising Explosive Sensors – Current Research

Mass sensors

Optical sensors

trinitrophenol (TNP)
Miniaturising Explosive Sensors – Current Research

Mass sensors

Optical sensors

Receptor-based sensors

trinitrophenol (TNP)
Miniaturising Explosive Sensors – Capacitance Sensors

For ε_0, A, d constant:

$$\text{Capacitance} = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Capacitance varies with polymer relative permittivity ε_r.
Seacoast Science Inc. (USA)
(founded 2003)

- “Off-The-Shelf” polymer deposition by inkjet printing
- Spot diameter 30 to 100 microns
- Polymers have sensitivity to most atmospheric vapours, often of similar magnitude
Seacoast use an array of sensors with different polymers combined with pattern recognition algorithms.
Seacoast LDC Data

Table 1. Demonstrated* detection capabilities of Seacoast Science’s capacitive sensor

<table>
<thead>
<tr>
<th>Class</th>
<th>Chemical</th>
<th>LDC* (ppm)</th>
<th>Chemical</th>
<th>LDC* (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWA Simulants</td>
<td>Chloroethylether</td>
<td>1</td>
<td>Methyl Salicylate</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Diisopropyl-methylphosphonate</td>
<td>0.1</td>
<td>Dimethyl methylphosphonate</td>
<td>0.1</td>
</tr>
<tr>
<td>Organic</td>
<td>Acetone</td>
<td>11</td>
<td>Hexadecane</td>
<td>0.097</td>
</tr>
<tr>
<td>Compounds</td>
<td>Acetonitrile</td>
<td>25</td>
<td>Isopropyl Alcohol</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>13</td>
<td>Methyl Alcohol</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Bromobenzene</td>
<td>7</td>
<td>Octane</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>n-Dodecane</td>
<td>46</td>
<td>Tetrahydrofuran</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Ethyl acetate</td>
<td>17</td>
<td>Toluene</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Allyl Alcohol</td>
<td>43</td>
<td>Phenol</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>Ethyl alcohol</td>
<td>63</td>
<td>Acetophenone</td>
<td>1.8</td>
</tr>
<tr>
<td>Nitro-</td>
<td>Nitrobenzene</td>
<td>1.3</td>
<td>Nitropropane</td>
<td>133</td>
</tr>
<tr>
<td>compounds</td>
<td>Nitrotoluene</td>
<td>2</td>
<td>2,6-Dinitrotoluene</td>
<td>0.004</td>
</tr>
</tbody>
</table>

*Lowest Detected Concentrations (LDC) were achieved without analyte pre-concentration in a laboratory controlled flow system in dry or 50% RH conditions.

From Seacoast Technical white paper
Electrochemical Deposition

Advantages:

- Fast, high-yielding and *in situ* polymer synthesis whilst using minimal amounts of monomer
- Eliminates multiple steps in the sensor fabrication process
- Clean synthesis and elimination of the need for multiple reagents and catalysts
- Depending on the monomer structure, the polymerisation can be performed in a wide range of solvents (or even in water)
- Specify deposition location and film thickness to sub-micron range
Interdigitated Capacitors

Capacitance = \(\frac{\varepsilon_0 \varepsilon_r A}{d} \)

Electrode gap sizes used: 1 to 20 microns
Polymer Electrochemically Grown from Monomer

Uncoated Electrodes

copolymer growth localised to electrodes
Sensor Test Chamber

- Agilent 4294A 4980A
- Paraffin oil
- Temperature and Humidity
- Water Bath
- Volatile Organic Chemical Sample
Results: nitro-group sensor vs “off-the-shelf” polymer
Cross-sensitivity to common atmospheric vapours

<table>
<thead>
<tr>
<th>Chemical Vapour Tested (Saturated Vapour)</th>
<th>Capacitance before exposure to vapour C_1 (picoFarads)</th>
<th>Capacitance after exposure to vapour C_2 (picoFarads)</th>
<th>Relative Change $(C_2 - C_1)/ C_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitropropane</td>
<td>7.24</td>
<td>529.80</td>
<td>72.22</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>7.53</td>
<td>315.63</td>
<td>40.92</td>
</tr>
<tr>
<td>TetraHydroFuran</td>
<td>6.77</td>
<td>7.25</td>
<td>0.072</td>
</tr>
<tr>
<td>Methanol</td>
<td>7.10</td>
<td>7.54</td>
<td>0.062</td>
</tr>
<tr>
<td>Toluene</td>
<td>7.13</td>
<td>7.33</td>
<td>0.029</td>
</tr>
<tr>
<td>Octane</td>
<td>7.03</td>
<td>7.19</td>
<td>0.023</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>7.00</td>
<td>7.04</td>
<td>0.0047</td>
</tr>
</tbody>
</table>
Expt Setup: dynamic flow

- Nitrogen
- Dessicator
- Paraffin oil
- P1, P2, F1, F2
- Digital Pressure Meter
- Temperature & Humidity
- Agilent 4294A 4980A mixer
- Test Chamber
- VOC Sample
- Paraffin oil

Test Chamber includes exhaust connections for Nitrogen.
Lower Concentrations

(Assuming saturated vapour flow)
Nitrobenzene detected over sub-100ppm range
Future Plans

Conjugated microporous polymers

- Increased surface area – higher sensitivity and faster response
- Incorporating other molecules or ions inside the pores

- Linear polymer

- Crosslinked polymer
Future Plans: 3D MEMS
Conclusions

- The synthesis of custom (polymer) materials having specific electronic properties rendering them suitable as sensors for target (nitro) molecules

- Viability of localised electrochemical polymerisation as a manufacturing process which uses low-capital-cost equipment

- Creation of sensors which show a reversible response to nitro-bearing compounds, and more than 100 times greater in magnitude compared to other organic vapours
Acknowledgments:

IeMRC: Innovative electronics Manufacturing Research Centre

Thank you for your attention!