INDIRECT MEASUREMENT OF CORE TEMPERATURE DURING WORK: CLOTHING AND ENVIRONMENTAL INFLUENCES

N.A.S. Taylor, B.R. Wilsmore, D. Amos, T. Takken, T. Komen, J.D. Cotter and A. Jenkins

1Department of Biomedical Science, University of Wollongong, NSW, Australia,
2Defense Science and Technology Organization, Melbourne, VIC, Australia.

INTRODUCTION

Since thermal tolerance impacts upon worker performance and health, the measurement of environmental stress and physiological strain are critical health considerations. However, field measurements of strain, particularly body-core temperature \( T_c \), are substantially harder than within the laboratory, and routine \( T_c \) measurement is rare. For industrial and military applications, direct \( T_c \) measurement may not be practical, or even possible. Consequently, surrogate indices of thermal strain have been sought. Clinical devices have been developed to evaluate \( T_c \) from surface measurements (see 1), and similar approaches have been used for field applications, attempting to exteriorize \( T_c \) (2), both with varying degrees of success. While skin temperatures \( T_{sk} \) are quite variable, it is feasible some shell tissues may approach \( T_c \) if environmental influences are minimized. The current project re-evaluated this possibility, using an insulated \( T_{sk} \) in exercising, clothed, men and women.

Six pre-experimental factors were considered: the \( T_{sk} \) of the chosen site must, in its uninsulated state, be inherently stable and closely approximate \( T_c \); since \( T_{sk} \) is influenced by subcutaneous adipose and skin blood flow, sites should not be located over large fat deposits, but, if practical, could be located over large blood vessels; such skin sites should be exposed to minimal air movement and have a relatively dry skin surface with minimal radiant heat exchange; since \( T_{sk} \) are more homogenous under hotter conditions, then air temperature is critical to its successful application; skin site(s) chosen must not impede worker performance; and the degree of thermal strain experienced will affect the signal to noise ratio of the technique, such that when heat storage drives \( T_c \) upwards, the impact of inherent noise will be minimized.

MATERIALS AND METHODS

We completed 87 trials across 5 thermal loads: unclothed subjects (\( n = 17 \) men; 15°C, 28°C, 40°C), continuously cycling at 25%, 39% and 57% of peak aerobic power (3x30 min); and clothed subjects (\( n = 12 \) (4 women); 25°C, 33°C, 40°C; 50% RH). In the latter trials, subjects wore a disruptive-pattern combat uniform (mass ~2 kg, insulation ~0.035 m\(^2\)-K-W\(^{-1}\)) and performed a 2-stage exercise-rest protocol (2% grade walk/run-rest). Stage one elevated \( T_c \) to ~38°C.
(5 min at 3 km·hr⁻¹, 1 km·hr⁻¹ increase every 10 min), followed by seated rest to lower \( T_c \) to \(-37.5^\circ C\). Stage two continued exercise-induced \( T_c \) elevation to \(-39^\circ C\) (5 min at 4 km·hr⁻¹, 5 min at 5 km·hr⁻¹, 1 km·hr⁻¹ increase every 10 min), followed by 15 min rest. Tests were performed in a balanced order between subjects and at the same time of day within subjects. The Human Research Ethics Committee (University of Wollongong) approved all procedures, and all subjects provided informed consent.

Core temperature was measured at the esophagus \((T_{es})\), rectum \((T_{rc})\) and auditory canal (Edale Instruments, Cambridge, UK). Skin temperatures were recorded at 8 uninsulated sites (forehead, scapula, upper chest, arm, forearm, hand, anterior thigh, calf) and 4 insulated sites (forehead, over jugular vein, spinous process (T2-T4) and ventral wrist; EU type, Edale Instruments, Cambridge, UK). Skin thermistors were attached with waterproof tape. Insulated sites were also covered with closed-cell foam (4 cm * 4 cm, 8 mm thick) and cottonwool (4 cm * 4 cm, -2 mm thick), and secured with waterproof tape. All temperatures were recorded at 5-s intervals (1206 Series Squirrel, Grant Instruments Ltd., UK). Sweat rate was approximated from mass change. Cardiac frequency (fc) was measured at 5-s intervals (PE4000, Polar Electro SportsTester, Finland). Thermal sensation, thermal discomfort and physical exertion (RPE) were recorded every 5 min.

It was assumed that, for field application of this technique, \( T_c \) would be derived using predictive equation(s), obtained from linear modeling of the laboratory-derived \( T_c \) and insulated skin temperature \((T_{sk-insul})\) relationships. For this reason, the accuracy of such \( T_c \) predictions was evaluated using linear regression analyses (least squares, best fit) across all conditions.

RESULTS AND DISCUSSION

Unclothed trials. Cool exposure (15°C) resulted in a mean \( T_{es} \) change from 37.02 °C to 37.57°C, with poor, and generally unacceptable \((r=0.79)\) correlations between \( T_{es} \) and insulated \( T_{sk} \). This was due to \( T_{sk} \) reductions during the first 30 min of the cool exposure. In the temperate state (28°C), mean \( T_{es} \) rose 0.50°C, while \( T_{rc} \) increased by 0.83°C, and the relationship between \( T_{es} \) and jugular \( T_{sk-insul} \) was strong \((r = 0.97)\). For trials at 40°C, with \( T_c \) progressively rising \((\Delta T_{es} = 1.58°C)\), jugular \( T_{sk-insul} \) started warmer and tracked \( T_c \) changes more rapidly. Esophageal temperature could be predicted from the average change in both jugular and spinal \( T_{sk-insul} \), with a standard error of the estimate of 0.06°C \((r = 0.99)\): at 40 °C: \( T_{es} = (T_{sk-insul} - 7.688 °C) / 0.791 \).

Thus, 95% of the actual \( T_{es} \) fell within 0.12°C of the value predicted using the surrogate \( T_c \) index. However, these data related to continuous exercise, during which \( T_c \) climbed progressively. They tell us little concerning the effectiveness of surrogate measures in intermittently exercising, clothed subjects, where \( T_c \) may be rising or falling.
Clothed trials. Subjects exercised for 95.6 min (23.0) and rested 28.2 min (10.2), with trials averaging 124 min (23.0). When analyzed across conditions, $T_{es}$, $fc$ and treadmill speed peaked in the following ways: stage one—38.1°C (0.2), 159.6 b·min$^{-1}$ (8.3), 8.4 km·hr$^{-1}$ (1.6); and stage two—39.2°C (0.3), 183.7 b·min$^{-1}$ (8.6), 9.4 km·hr$^{-1}$ (1.6), respectively. Terminal mass change averaged 1.68 kg (0.70), and final effort sense (RPE) was 17.4 (1.8: very hard). Thus, this protocol induced significant thermal strain, under conditions ranging from slow walking to running and approached maximal tolerable exercise for the imposed conditions.

Following thermal equilibration, $T_{sk-insul}$ at each site increased with $T_{es}$ and tracked resting and recovery falls in $T_{es}$. While temperatures were offset by as much as 2°C in the temperate state, they converged in the heat, particularly when $T_{es}$ approached 39°C, making these indices more useful for detecting the onset of heat strain, though less effective in the thermoneutral range. Close inspection of rest and recovery data showed that $T_{es}$ decreased almost immediately when exercise was terminated, due to the rapid reduction in heat production. However, $T_{sk-insul}$ rose transiently, before also decreasing. This continued rise was due to delayed heat flux, and the peaks in $T_{es}$ and $T_{sk-insul}$ were out of phase at this time. When exercise resumed, the $T_{es}$ to $T_{sk-insul}$ association returned to its previous relationship. That is, within individuals, the link between $T_{es}$ and $T_{skin-insul}$ may be adequately described by a single linear function, for both continuous and discontinuous exercise.

The $T_{sk-insul}$ site showing the poorest relationship with $T_{es}$ across conditions, was the ventral wrist, followed by the jugular $T_{sk-insul}$. The latter may be attributable as much to the difficulty of ensuring constant skin attachment, as it was to the facility of the site. The poor relationship with the wrist $T_{sk-insul}$ was a function of the time taken for $T_{e}$ exteriorization. That is, even under hot conditions, skin temperature is not uniform, with more distal sites generally being cooler and approximating $T_{e}$ only after an elevation in both $T_{e}$ and $T_{sk}$. Notwithstanding a temperature offset between the forehead and spinal sites, both sites appeared equally capable of tracking $T_{es}$. However, from a practical perspective, the back may be best suited for $T_{es}$ monitoring in the worker.

Since the prime concern for industrial and military applications is the relationship between $T_{skin-insul}$ and $T_{es}$, when $T_{es}$ is increasing, data for the exercise periods were extracted. Esophageal temperature was regressed against $T_{sk-insul}$ within each condition (Table 1), for all subjects simultaneously, yielding the following predictions:

- at 25°C: $T_{es} = 20.01°C + 0.49 \times$ spinal $T_{skin-insul}$
- at 33°C: $T_{es} = 3.87°C + 0.91 \times$ spinal $T_{skin-insul}$; and
- at 40°C: $T_{es} = 9.11°C + 0.76 \times$ spinal $T_{skin-insul}$. 

327
Table 1: Correlation matrix for $T_{sk-insul}$ and $T_c$ in clothed subjects

<table>
<thead>
<tr>
<th>$T_c$</th>
<th>Condition</th>
<th>Jugular</th>
<th>Wrist</th>
<th>Forehead</th>
<th>Spine</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{es}$</td>
<td>40°C</td>
<td>0.85</td>
<td>0.90</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td>$T_{sc}$</td>
<td>0.89</td>
<td>0.92</td>
<td>0.95</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>$T_{re}$</td>
<td>0.74</td>
<td>0.93</td>
<td>0.85</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>$T_{es}$</td>
<td>All</td>
<td>0.82</td>
<td>0.81</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>$T_{re}$</td>
<td>0.88</td>
<td>0.84</td>
<td>0.91</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>$T_{re}$</td>
<td>0.80</td>
<td>0.89</td>
<td>0.85</td>
<td>0.85</td>
<td></td>
</tr>
</tbody>
</table>

Several points are noted. First, the insulation procedure largely, but not completely, removed the influence of air temperature. Second, a non-insulated $T_{sk}$ is of little value in predicting $T_{es}$ trends. Third, the correlation between $T_{sk-insul}$ and $T_{es}$ is site dependent, particularly under cooler environments. Fourth, the $T_{sk-insul}$ relationship with $T_{es}$ was somewhat dependent upon air temperature. Fifth, the error of predicting $T_{es}$ is largely influenced by the $T_{sk-insul}$ variability between subjects. Finally, previous groups have focused upon the relationship between skin and $T_{re}$, yet in > 50% of the current comparisons at 33°C and 40°C, $T_{sk-insul}$ (spine and forehead) provided an equivalent or better prediction of $T_{es}$ than did $T_{re}$ on its own.

CONCLUSIONS

It may be concluded that surrogate indices of $T_c$ do exist, which, when insulated from environmental influences, may be used to predict changes in $T_{es}$ with substantial accuracy.

REFERENCES


ACKNOWLEDGMENT

The Defense Science and Technology Organization (Australia) supported this investigation. B.R. Wilsmore holds, and J.D. Cotter held, Postgraduate Research Scholarships from the University of Wollongong, Australia.