INTRODUCTION
The earlier research of the effects of cooling on muscular performance of the leg has been mainly done during jumping or bicycling exercise (1, 2). In these exercises the elastic properties of the muscles may not be fully utilized. Hence, in this study we examined how cooling affects muscular performance during drop-jump exercise, which effectively utilizes elastic properties of the working muscles.

METHODS
Twelve slightly clothed male subjects were exposed to 10°C and 27°C for 60 min. Rectal temperature (Tre) and skin temperatures from 7 sites were measured and registered every minute by a portable data logger (Squirrel 1200, Grant Instruments Ltd, England). Muscle temperature of in. gastrocnemius medialis was measured (n=6) at the end of similar exposures from the depth of 30 mm. After the exposures the subjects dropped from a bench (six different heights 10, 20, 30, 40, 50 and 60 cm) onto a force plate (Newtest, Finland) and performed a maximal instantaneous jump upwards. The subjects were asked to perform the jump with a minimum knee angle to maximally utilize the muscles of the calf. From the force plate data the mean force (meanF) produced during upward movement and the rise of body center of gravity (BCOG) during the jump was calculated. The take-off velocity of the jump was measured using an optoelectronic motion analysis system (MacReflex, Sweden).

RESULTS
The exposure to 10°C decreased mean skin temperature 5.8°C (p<0.001). Rectal temperature was virtually unaffected. Muscle temperature of in. gastrocnemius medialis decreased 4.1°C (p<0.01).

The rise in BCOG was significantly lower after cooling in every drop height (Fig. 1). The average decrease was 21%.

Figure 1. The rise in BCOG after exposure to 27°C (circles) and 10°C (squares). * = p<0.05, ** = p<0.01
Cooling decreased force production of the lower leg and hence also the take-off velocity tended to be slower (average decrease 10%, Table 1).

Table 1. The effect of cooling on force production (meanF) and take-off velocity (Take-off) during the shortening phase. * = p<0.05, ** = p<0.01 and NS = not significant.

<table>
<thead>
<tr>
<th>Drop height</th>
<th>10 cm</th>
<th>20 cm</th>
<th>30 cm</th>
<th>40 cm</th>
<th>50 cm</th>
<th>60 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>27°C meanF (N)</td>
<td>1980±205</td>
<td>1970±208</td>
<td>1812±170</td>
<td>1818±121</td>
<td>1802±234</td>
<td>1663±217</td>
</tr>
<tr>
<td>10°C meanF (N)</td>
<td>1389±82</td>
<td>1418±75</td>
<td>1436±73</td>
<td>1450±67</td>
<td>1275±106</td>
<td>1219±94</td>
</tr>
<tr>
<td>Take-off (m s⁻¹)</td>
<td>2.57±0.2</td>
<td>2.54±0.2</td>
<td>2.67±0.2</td>
<td>2.65±0.1</td>
<td>2.56±0.1</td>
<td>2.50±0.1</td>
</tr>
<tr>
<td>27°C</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>10°C</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

CONCLUSIONS
After cooling a decreased level of force production was observed. This caused a smaller rise in BCOG after the exposure to 10°C.

The average decrement in muscular performance was 21% during lower leg exercise where elastic properties of the muscles were effectively utilized. In our previous studies after similar thermal exposures and exercise modes where elasticity of the muscles were not so efficiently utilized, like rebound jumping (3) or throwing (4), the decrement in performance varied between 7 - 11%. This implies that exercise mode where elasticity of the muscles are effectively utilized may be more susceptible to cooling.

REFERENCES

