ADVANCES IN GYRO-AMPLIFIER RESEARCH

Alan D. R. Phelps
Department of Physics, SUPA, University of Strathclyde,
Glasgow, G4 0NG, UK

Gyro-devices are fast wave devices based on the principles of
the electron cyclotron maser1,2. Gyro-oscillators have been
successfully developed in the form of gyrotrons3,4. Gyro-
amplifiers have been studied for approximately as long as
gyro-oscillators but in the early years the amplifiers exhibited
stability issues. Gyro-amplifiers include broadband gyro-
TWTs and the narrower band gyro-klystrons. Introducing
distributed losses can prevent gyro-amplifier oscillations,
although this approach becomes more difficult at high
powers. Garven et al.5 successfully demonstrated a ‘zero-
drive stable’ high power gyro-TWT at 35GHz by
incorporating lossy ceramic rings. Blank et al.6 in 2002
achieved an impressive 100kW peak output power from a 94
GHz gyro-klystron.

A design which can avoid some of the disadvantages of
conventional gyro-TWTs was reported by Denisov et al.7 in
1998 and was experimentally demonstrated by Bratman et
al.8 in 2000. This has led to a series of broadband, high power
gyro-TWTs9 and has stimulated research on the key
components10,11 for these gyro-amplifiers. The advances
made during the most recent ten years will be presented.

4. M. Thumm, “Progress on gyrotrons for ITER and future
 thermonuclear fusion reactors”, IEEE Trans. Plasma Sci., 39,
 971-979, 2011.
 amplifier experiment with a ceramic loaded interaction
6. M. Blank, et al., “Development and demonstration of high-
 average power W-band gyro-amplifiers for radar
7. G. G. Denisov, et al., “Gyrotron traveling-wave amplifier
 with a helical interaction waveguide”, Phys. Rev. Lett., 81,
8. V. L. Bratman, et al., “High gain wideband traveling-wave
 amplifier with a helically corrugated waveguide”, Phys. Rev.
 gyrotron traveling wave amplifier using a thermionic cathode
 millimeter wave gyrodevices”, Appl. Phys. Lett., 96, 141501,
 2010.
 Helically Corrugated Waveguide”, IEEE Trans. MTT, 60, 1-7,
 2012.