PULSED MICROPLASMAS GENERATED IN TRUNCATED PARABOLOIDAL MICROCAVITIES: SIMULATIONS OF PARTICLE DENSITIES AND ENERGY FLOW

Ho-Jun Lee
Department of Electrical Engineering, Pusan National University, Busan 609-735 Korea

S.-J. Park and J.G. Eden
Laboratory for Optical Physics and Engineering
Department of Electrical and Computer Engineering
University of Illinois
Urbana, IL 61801 USA

Microplasmas generated within cavities having the form of a truncated paraboloid, introduced by Kim et al. [Appl. Phys. Lett. 94, 011503 (2009)], have been simulated numerically with a two-dimensional, fluid computational model. Microcavities with parabolic sidewalls, fabricated in nanoporous alumina (Al_2O_3) and having upper (primary emitter) and lower apertures of 150 µm and 70 µm in diameter, respectively, are driven by a bipolar voltage waveform at a frequency of 200 kHz. For a Ne pressure of 500 Torr and 2 µs, 290 V pulses constituting each half-cycle of the driving voltage waveform, calculations predict that ~10 nJ of energy is delivered to each parabolic cavity, of which 26-30 % is consumed by the electrons. Once the cathode fall is formed, approximately 65% and 8% of the input energy is devoted to driving the atomic ion and dimer ion (Ne$_2^+$) currents, respectively, and the peak electron density of ~6×10^{12} cm$^{-3}$ is attained ~90 ns following the onset of the first half-cycle (positive) voltage pulse. Specific power loading of the microplasma reaches 150 kW-cm$^{-3}$ and the loss of power to the wall of the microcavity drops by as much as 22% when the excitation voltage is increased from 280 V to 310 V. The diminished influence of diffusion with increasing pressure is responsible for wall losses at 600 Torr accounting for < 20% of the total electron energy.

*The support of this work by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0048 is gratefully acknowledged

*This work was supported by the Basic Science Research Program of the National Research Foundation of Korea of the Ministry of Education, Science, and Technology under Grant 2010-0011136