In general, the operating characteristics of RF vacuum electronic or plasma devices are affected by the power supply, e.g., a pushing effect on the oscillating frequency of a magnetron by a supplied anode current. The external impedance connected to the system under study should be included in the electromagnetic (EM) particle-in-cell (PIC) simulations especially when the system is in a transient state or characterized with a dynamic impedance. In this work, an algorithm for coupling external circuit elements to EM PIC simulations is developed. The circuit equation including an external voltage \(V \), or current source \(I \), resistance \(R \), inductance \(L \), capacitance \(C \), and the dynamic load (I-V) is solved simultaneously with the EM PIC updaters through an instant measured voltage \(V \) across the system to obtain the supplied current \(I \) for feeding into the system. This external circuit model is under testing and will be implemented in a 3D conformal finite-difference time-domain PIC code, VORPAL.

* This work is supported by the U.S. Department of Energy under Grant No. DE-SC0004436.