The propagation of nonlinear low frequency mode in a strongly correlated dusty plasma are investigated in the frame work of Generalized Hydrodynamical (GH) model. For well known longitudinal dust acoustic mode a standard perturbative approach leads to Korteweg de Vries (KdV) soliton. The strong viscoelastic effect however introduced a nonlinear forcing and a linear damping in the KdV equation. This novel equation is analysed perturbatively to show a competition between nonlinear forcing and dissipative damping. The physical consequence of such solution is also discussed.