Z-pinch driven inertial confinement fusion (ICF) is a fascinating object, and much progress had been obtained on Z machine by using the dynamic hohlraum concept, in which high velocity wire-array plasma impacts low-Z foam to create a hohlraum, where a DT capsule is imploded to ignition. In this report we discuss the collision and energy transfer between the wire-array and low density foam. And this report also limits the discussion for a low current generator, in which some experiments had been tried. It is shown that the typical process for the collision of wire-array plasma and low density foam can be divided into four stages. The first stage is the acceleration of wire-array plasma, and in this stage wire-array plasma has a very weak connection with low density foam. The second stage means the collision and the launching of a strong shock wave, which is a main mechanism for the radiation generation in foam plasma. The most strong energy interchange also takes place in this stage. And after the shock wave rebounds from the axis and reaches the boundary of wire-array/foam, stagnation takes place. And that is the third stage. Finally, the fourth stage is the expanding of the whole plasma. It is also shown that in foam plasma, the temperatures of ion, electron and radiation