Dusty plasma consists of electron, ion, neutral particles and micron sized dust particles. Large (~ 10^4 e) amount of charge on each dust particles makes them strongly coupled with neighbors. Hence the system gets some elastic property together with inherent viscous property of a fluid. The elastic property enables the strongly coupled dusty plasma system to support a transverse shear wave of phase velocity
\[\rho c_s = \sqrt{\frac{\tau}{\eta}} \]

where \(\eta \) is the viscous coefficient; \(\tau \) is the Maxwell relaxation time, \(\rho \) is the density of the medium [1]. Recent experiment[2] have shown that dusty plasma system shows non-Newtonian behavior i.e, viscosity depends on velocity shear rate. This behavior provides nonlinearity in this system. Hence, we are reporting this non linear effect on elastic shear wave. Non-Newtonian property is modeled through a experimentally justified \(n(s) = n_0 (1 + \alpha s^2) \) Carreau- Bird model. where viscosity coefficient \(\eta \) depends on \(S \) which is function of velocity shear rate. In our case, \(S = \frac{\partial V}{\partial x} \), where \(V \) is the perturbed velocity of the dust fluid. \(\alpha \) is the shear thinning parameter. Hence, nonlinear equation of shear wave propagating along x- direction becomes

\[\frac{\partial^2 V}{\partial x^2} - \frac{\partial^2 V}{\partial x^2} = n \left(\frac{\alpha}{\eta} \right) \]

all quantities are dimensionalized as \(V \rightarrow \frac{V}{C_{sh}}, T \rightarrow \frac{T}{L}, \tau \rightarrow \frac{C_{sh}}{L} \)

We have solved numerically and observed that initial sinusoidal form will reoccur after going through different periodic structure.

After you have successfully uploaded your abstract, please send the signed IEEE copyright form through the abstract submission site.

Figure: Energy plot of different harmonics for different values of \(\alpha \).