PTFE AND C₃F₆ DEPOSITION ON THE AISI 1050 STAINLESS STEEL FOR LUBRICATION BY RF PLASMA

Erdogan Teke
*Suleyman Demirel University, Faculty of Arts and Sciences
Department of Physics, 32260, Isparta, TURKEY*

Hatice Varol
Suleyman Demirel University, Technical Sciences Vocational School, Department of Machine, 32260, Isparta, TURKEY

Ferhat Bozduman, Ali Gulec, Lutfi Oksuz
*Suleyman Demirel University, Faculty of Arts and Sciences
Department of Physics, 32260, Isparta, TURKEY*

Sorin Manolache
University of Wisconsin, Center for Plasma-Aided Manufacturing, 53706, Madison Wi, USA

Erdem Camurlu
Akdeniz University, Faculty of Engineering Department of Mechanical, 07058, Antalya, TURKEY

Cahit Kurbanoglu
Istanbul Civilization University, Faculty of Engineering Department of Mechanical, 34730, Istanbul, TURKEY

In this study, on surface of heat treated AISI 1050 stainless steel was coated in RF vacuum plasma system with different plasma parameters (treatment time, type of gas, power, pressure, electrode distance). First stainless steel surfaces were coated by plasma grafting of sprayed polytetrafluoroethylene (PTFE) using by Argon and Helium plasma. In the other process, thin layer was deposited by hexafluoropropene (C₃F₆) plasma on the stainless steel surface. After the deposition, surface morphology was analysed by Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), Atomic force microscope (AFM). Abrasion of samples was tested. As a result of abrasion test the C₃F₆ plasma processes more effective than PTFE coating. Optical emission spectrum (OES) and current-voltage measurements were used for plasma characterization.