Metal puff Z pinch is a novel and promised way to produce soft X-ray radiation sources based on Z pinches. Authors of Ref.2 have studied the performance of a metal double puff Z-pinch system (450 kA, 450 ns). In this type of system, the outer and inner cylindrical shells were produced by ten plasma guns. Each gun initiates a vacuum arc operating between metal electrodes. Total gun current was equal to 80 kA. The Z-pinch linear mass is determined by the gun electrode erosion rate γ_{eros} [g/C]. The magnification of the value γ_{eros} gives the possibility using the metal puff Z pinch for the driver current more than 1 MA. We carried out the experiments for the γ_{eros} study as a function of the vacuum arc current density. The γ_{eros} value increases from 1 mg/C up to 25 mg/C while the current density increases from 80 A/cm2 up to 860 A/cm2. Vacuum guns with the increased γ_{eros} were used in the Z-pinch implosion experiments. The simulation demonstrated that it is possible to increase the Z-pinch linear mass owing to the using of the vacuum guns with high current density.