Proofing the Concept of Sustainable Drainage Schemes Using an Integrated Urban Drainage Model

Anthony Raine
Principal Modeller Catchment Management

Welcome to Pell Frischmann
Contents

• Project / Catchment Description & History;
• Integration With Other Stakeholders;
• Flooding History & Mechanisms;
• Surveys & Modelling Undertaken;
• Joint Probability & Boundary Conditions;
• Damage Cost Assessment;
• Concept Proofing Using the Model;
• Latest Options;
• Conclusions / Lessons Learnt;
• Next Steps.
St Austell Resilient Regeneration (StARR) Project

- Recognition that flooding cannot be entirely prevented, but via a partnership approach the risk can be reduced;
- Partners in StARR Project Include:-
 - Environment Agency;
 - Cornwall Council;
 - South West Water;
 - University of Exeter;
 - Cornwall Development Company;
 - West Country Rivers Trust.
- £20M bid to:-
 - reduce flood risk and pollution affecting >500 homes & 200 businesses;
 - reduce flood risk to strategic road and London rail network;
 - work with nature to reduce flood risk & create habitats;
 - encourage investment in area through greater resilience and increase the wellbeing of the affected communities.
Par Lane SWMP Case Study
Par Lane Integrated Urban Drainage Management – The Key Players

The Local Community
Project History

- 2004 – SWW/PF Par DAS/DAP;
- 2006 – SWW/PF DG5 Evaluation 5 Internals / 18 Externals;
- 2010 – EA/Capita Symonds ISIS - Tuflow Fluvial Model;
- 2012 – SWW Supplementary DG5 Evaluation Report Recommending Need For A SWMP;
- 2014 – SWW/EA/Cornwall Council/PF – SWMP Phase 1;
- 2015 - SWW/EA/Cornwall Council/PF – SWMP Phase 2 (Incl. Flooding Appraisal & Options Report);
Simplified Schematic of Drainage within the Study Area
Flooding History
Flooding Mechanisms

- Multiple sources and complex i.e. All drainage (Incl. Highway Drains, Public SW Sewers, Combined Sewers and Watercourses) systems become inundated and flood under varying conditions;
- Direct rainfall runoff, boundary conditions (tide & river levels), mine adit flows and infiltration all play a part too.
Table 1 - Sources of Flooding at Brooks Corner

<table>
<thead>
<tr>
<th>Source</th>
<th>5 year</th>
<th>10 year</th>
<th>30 year</th>
<th>100 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverted Siphon (currently maintained by SWW)</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Highway Drainage (CC)</td>
<td>48%</td>
<td>48%</td>
<td>55%</td>
<td>60%</td>
</tr>
<tr>
<td>Combined Sewers (SWW)</td>
<td>7%</td>
<td>10%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Surface Water Sewers (SWW)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Biscovey Stream (CC/EA)</td>
<td>18%</td>
<td>22%</td>
<td>30%</td>
<td>26%</td>
</tr>
<tr>
<td>Overland Flows (private landowners)</td>
<td>27%</td>
<td>19%</td>
<td>11%</td>
<td>6%</td>
</tr>
<tr>
<td>St. Blazey Stream (EA)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Surveys Undertaken

• Private Drainage Surveys;
• Impermeable Area & Connectivity Surveys;
• CCTV Surveys;
• Flow Surveys;
• Manhole & Ancillary Surveys;
• River Channel & Culvert Surveys;
• Site Walkovers;
• Flooding Questionnaires & Public Meetings.
Modelling Undertaken

- 1D Type II DAP SWW Combined Sewer Model;
- Model Enhancement (Incl. SW/Highway Sewers & Watercourses);
- Model Updated With Additional Survey Information;
- 2D Model of Affected Area Incl. Infiltration Zones On Surrounding Hillsides To Yield Greenfield Runoff Using The Horton Method;
- Verification of IUDM Model;
- Existing Performance Assessment & Historical Verification;
- Creation Of Design Horizon Model (Incl. Allowances For Development Growth, Climate Change & Urban Creep);
- Joint Probability Analysis Of Return Period Rainfall;
- Sensitivity Testing (Incl. Proofing Concept Solutions);
- Detailed Option Modelling.
Climate Change & Joint Probability (Rainfall & Sea Level)

Climate Change

• “Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities”, EA;

Joint Probability

Proofing Concept Solutions

- **Why?** – To Support Funding Application From EU Regional Development Fund;
- **How?** – Working With Other Stakeholders To Agree What Can Be Achieved & Testing Concepts Using IUDM Model;
- **When?** – 1 Month Tight Timescale Requiring Frequent Meetings Between Parties & Use Of Shared Desktop / Teleconferencing.
Concepts Modelled

• Limiting Flows Within The St. Blazey Stream to 1.1 m³/s;

• Intercepting & Storing Runoff In The Upper Catchment (Incl. Detention Basins / Raingardens);

• Diverting Overland Flow Paths From Brooks Corner;

• Increased Pump Rate Of Biscovey Stream and modifications to the Tredenham Close CSO.
Limiting Flows Within The St. Blazey Stream
Intercepting Flows In Upper Catchment

- Doubletrees School
- Burrows Centre
- Harbours Road
- Tredenham Close
- Brooks Corner
- Manor View Road
- Penarth Road
- Trenovissick Road
- Bobs Road
- A380

- Attenuation Potential
- Detention basins
- Rain gardens
Increased Pump Rate At Tredenham Close SPS & Diversion Of CSO

Tredenham Rd CSO

Biscovey Stream

St. Blazey Stream

Tredenham Close SPS
Diverting Overland Flow Paths

Walls prevent flows further down Par Lane

2D manholes and pump link, convey overland flows onto Harbour Road
Existing 30-year event
Flood extents (left), maximum level within combined sewer in St. Blazey Road (above)

Proposed 30-year event
Flood extents (left), maximum level within combined sewer in St. Blazey Road (above)
Latest Options

Scheme 1 – Least Cost / Highest Risk Option
Mitigate hot-spots where raising kerbs may provide a design exceedance route;
Burrows Centre Detention Basins
5 x rural basins (capacity ~30cu.m each) to be installed north of Biscovey
Attenuation in Double Trees school (‘soft / green’ areas only)
1 x 10m wide contour tree planting strip across full width of fields north of Biscovey

Scheme 2 – Medium Cost / Medium Risk Option Incl. Scheme 1, PLUS:
Harbour Road exceedance route
Rain Gardens (Par Lane section only)
5x ADDITIONAL rural basins to be installed north of Biscovey (10 total)
1 x ADDITIONAL 10m wide contour tree planting strip across full width of fields north of Biscovey (2 TOTAL)
Attenuation in Double Trees school (ADDITIONAL attenuation under carparks)

Scheme 3 – High Cost / Low Risk Option Incl Scheme 2, PLUS
All other rain garden opportunities;
Maximise attenuation in Doubletrees School
1 x ADDITIONAL 10m wide contour tree planting strip across full width of fields north of Biscovey (3 TOTAL)
All other detention basin opportunities
Upper Catchment
- Let water slow

Luxulyn Valley and Upper Valley Storage
- Utilise available storage in the valley to reduce peak flows downstream

Hogwood Dam Storage
- Optimize flood storage, increasing the connectivity between the channel and floodplain making use of available land

Prideaux Stream Spill
- Intercept and divert flows from the Prideaux Stream into a storage area creating wetland habitat and increasing capacity in the St Blazey system

Hillslope Management
- Divert and slow flows using catchment management solutions to reduce overland flow routes to St Blazey

Par Lane
- Strengthen conventional engineering solutions in Par Lane by creating additional storage using green open space, verges and traffic calming structures

Lower Catchment
- Let water flow

Aberdeen Close Storage
- Create storage areas in the green open space diverting flows away from the A390 and adjacent property

St Blazey Channel Improvements
- Improve the existing channel so that flows are transferred to the proposed storage area at the rear of Aberdeen Close

Exceedance Routes
- Create safe flow pathways for excess flood water through Aberdeen Close and Station Road

Storage Areas
- Create new storage areas in green open space and work with existing amenity space so that its potential for storing and moving flood flows towards existing floodplain is maximised during extreme events

Amenity Space and Floodplain
- Connect flood water back into the St Blazey’s natural storage area with an opportunity to create considered landscaping in a high profile location which demands strong design principles with the integrated, multifunctional solutions.
Conclusions / Lessons Learnt

- Good survey data is required e.g. MH, IAS, CCTV;
- Use of long term flow monitors / sensors and raingauges to better understand performance and to trigger maintenance;
- Sewer ownership issues need to be discussed and resolved. Who will own / maintain assets?;
- Use of long term flow monitors / sensors and raingauges to better understand performance and to trigger maintenance;
Next Steps

• Further modelling / meetings to discuss, agree and refine options (Complete Phase 3 SWMP);
• Review constructability (Phase 4 SWMP);
• Cost options;
• Agree preferred solution and phasing;
• Public engagement;
• Secure funding;
• Progress detailed design;
• Engage contractor and implement solution;
• Review performance.
Questions ?