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1 Introduction

We often want to predict, or explain, one variable in terms of others.

• How does a household’s gas consumption vary with changes in the outside temper-
ature?

• How does the crime rate in an area vary with differences in police expenditure,
unemployment, or income inequality?

• How does the risk of a person contracting heart disease vary with their blood pres-
sure?

Regression modeling can often help with this kind of problem.

The aim of this handout is to introduce the simplest type of regression modeling, in which
we have a single predictor, and in which both the response variable - e.g. gas consumption
- and the predictor - e.g. outside temperature - are measured on numerical scales.

In Section 8, we explain how simple linear regression can be generalized to deal with
situations involving multiple predictors and categorical variables.

For details of how to fit a simple linear regression model in SPSS, see separate handout.

2 Model for simple linear regression

Figure 1 (a) shows a scatterplot of gas consumption and average outside temperature for
26 one-week periods1.

As we’d expect, higher outside temperatures tend to be associated with lower gas con-
sumption. The relationship between the two variables can be approximated roughly with
a straight line - see Figure 1 (b) - and we could use this fitted line to predict the expected
gas consumption for any given outside temperature.

But even with a very strong relationship, as here, there’s still some variation in gas
consumption that can’t be accounted for by our simple linear model - the gas consumption

1Source of data: Hand (1994)

1



0 2 4 6 8 10

10
00

15
00

20
00

(a) Scatterplot

Outside temperature (°C)

G
as

 c
on

su
m

pt
io

n 
(k

W
h)

0 2 4 6 8 10

10
00

15
00

20
00

(b) Scatterplot with fitted line
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Figure 1: Gas consumption vs Temperature

sometimes lies above the line and sometimes below. In simple linear regression, we take
account of this unexplained variation by using a model of the form. . .

G = β0 + β1T + ε

. . . where G is the gas consumption, T is the temperature and ε represents the unexplained
variation.

We can’t predict the size or direction of the ε’s, but we can say something about how large
they’re likely to be. Looking at Figure 1 (b), a discrepancy from the line of say 50kWh
would seem to be quite normal, but a discrepancy as large as 500kWh would be very
surprising. In simple linear regresion,we assume that the ε’s vary according to a Normal
distribution.

3 Fitting the model

Before we can use our model to make predictions, we need to estimate the coefficients β0

and β1. We do this by fitting a line to our data, using the criterion of least squares. The
idea is to choose the line that minimizes the sum of the squares of the distances between
the observed values of the response (gas consumption) and the values predicted by the
model. Any statistical software will carry out the required calculations. Table 1 shows
an extract from the SPSS output for the Gas data.

The coefficients are contained in the column headed ‘B’. Rounding the figures to the
nearest whole number, the fitted model is. . .

G = 2172− 125 T

Notice that the coefficient of T is negative, reflecting the fact that higher temperatures
are associated with lower gas consumption.
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Coefficients

Unstandardized
Coefficients

Model B Std.Error t Sig.
1 (Constant) 2172.174 37.532 57.876 .000

T -124.629 6.207 -.971 .000

Table 1: SPSS output for Gas data

4 Using the model

Once we’ve fitted a model, we can use it to make predictions - e.g. to predict the gas
consumption corresponding to an outside temperature of 6 deg C, or the reduction in gas
consumption corresponding to a 5 deg C increase in temperature.

For a temperature of 6 deg C, we predict a gas consumption of. . .

G = 2172.174− (124.629 ∗ T )

= 2172.174− (124.629 ∗ 6)

' 1424 kWh

This figure gives us a rough idea of the gas consumption, but it is subject to some
uncertainty - the actual consumption may be a bit higher or lower than our estimate
suggests.

By making some assumptions about the unexplained variation, we can quantify the un-
certainty and calculate a confidence interval, or range of plausible values, for the gas
consumption.

5 Assumptions of simple linear regression

We make the following assumptions. . .

• Mean response varies linearly with predictor

• Unexplained variation is Normally and independently distributed with constant vari-
ance

To check these assumptions, we look at plots of the residuals and fitted values. The fitted
values are the values of the response predicted by the model. The residuals are obtained
by taking the observed values of the response and subtracting the fitted values. The two
most useful plots are. . .
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• Plot of Residuals vs Fitted values

– We can use this plot to check the assumptions of linearity and constant vari-
ance. For example, Figure 2 shows some plots for a regression model relating
stopping distance to speed2. The plot on the left shows the data, with a fitted
linear model. The plot on the right shows the residuals plotted against the
fitted values - a smooth curve has been added to highlight the pattern of the
plot.
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Figure 2: Stopping distance vs Speed

Ideally, the residual plot should show a horizontal band of roughly equal width.
In this case, we have a strong ‘U’ shape, suggesting that the residuals go from
positive to negative to positive. This suggests that we’re fitting a line to a
non-linear relationship - see plot of original data. In addition, the width of the
band of data increases from the left to the right, suggesting that the variance
is increasing. There are various courses of action that we can take to deal with
these problems - for details, consult a Statistician.

• Normal probability plot of residuals

– This plot is used to check the assumption that the unexplained variation fol-
lows a Normal distribution. If the ε’s are roughly Normal, this plot should be
roughly linear. Any strong systematic curvature suggests a non-Normal distri-
bution. Figure 3 shows a Normal plot for the Gas data. The plot seems to be
roughly linear, suggesting that there is no evidence of non-Normality.

There are several ways of checking the assumption that the random errors, or ε’s are
statistically independent. For details, see Koop (2008). The assumption of independence
is not usually a problem except for data that has been collected at successive points in
time - e.g. monthly unemployment figures.

2Source of data: Hand (1994)
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Figure 3: Normal probability plot for gas data

6 Confidence intervals for predictions

Provided the assumptions in Section 5 are satisfied, we can obtain confidence intervals
for any predictions that we make. There are two types of interval. . .

• Confidence interval for individual case

– Range of plausible values for a single case - e.g. for the gas consumption in a
single 1-week period

• Confidence interval for mean

– Range of plausible values for the mean - e.g. for the mean gas consumption
over a large number of 1-week periods, all with the same average outside tem-
perature

In Section 4, we made a prediction of gas consumption for a week in which the outside
temperature is 6 deg C. To put a confidence interval on this prediction, we use the SPSS
output in Table 2.

Temp PRE 1 LMCI 1 UMCI 1 LICI 1 UICI 1
6.00 1424 1387 1461 1237 1612

Table 2: Prediction and confidence intervals

If we’re predicting the gas consumption for a single week, we use the columns headed
LICI 1 (Lower Individual Confidence Interval) and UICI 1 (Upper Individual Confidence
Interval).

95% confidence interval 1237 to 1612 kWh
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We can be fairly sure that the gas consumption will lie within this range.

If we wished to predict the mean gas consumption over a large number of weeks in which
the temperature was 6 deg C, we would use the columns LMCI 1 and UMCI 1.

95% confidence interval for mean 1387 to 1461 kWh

This interval is much narrower. We’re much less sure about the gas consumption in a
single week than we are about the mean consumption over a large number of weeks.

7 Confidence interval for slope of regression model

We’re sometimes interested in the change in the response corresponding to a given change
in the predictor. For example, how much will our stopping distance increase if we travel
10mph faster? We can answer this kind of question by looking at the slope of the regression
line.

Figure 3 shows some SPSS output giving the coefficients of the Gas model, togethre with
confidence intervals for both the slope and intercept.

Coefficients

Unstandardized 95% Conf Int for B
Coefficients Lower Upper

Model B Std.Error Bound Bound
1 (Constant) 2172.174 37.532 2094.712 2249.636

T -124.629 6.207 -137.440 -111.817

Table 3: Confidence intervals for coefficients

The coefficient of T is -124.629. This tells us that an increase of 1 deg C in the temperature
is associated with a reduction in gas consumption of around 124.629kWh. The columns
on the right of the table give a confidence interval for this figure.

95% confidence interval 111.817 to 137.440 kWh

This gives us a range of plausible values for the reduction in gas consumption correspond-
ing to an increase of 1 deg C in the temperature.

If we’re interested in the change in gas usage corresponding to say a 5 deg C increase in
temperature, we can obtain a confidence interval by simply multiplying the lower and
upper ends of our confidence interval by 5 to give. . .

95% confidence interval 559.085 to 687.200 kWh
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8 Extending simple linear regression

This section indicates some of the ways in which simple linear regression can be extended
to model more complex behaviour. For more details, see Freund and Wilson (1998).

• Multiple regression

– In multiple regression, we can introduce several predictors, rather than just
one. For example, in trying to explain variation in the crime rate in different
cities, we might use a model of the form. . .

R = β0 + β1Ed + β2Ex + β3U + ε

. . . , where R is the crime rate, Ed is a measure of educational level, Ex is
police expenditure and U is unemployment.

Fitting a multiple regression model is quite simple, but interpreting the fitted
model can be quite challenging. There are often strong near dependencies
among the predictors and this can make it difficult to separate out the effect
of each individual predictor.

• Allowing for curvature

– We can sometimes allow for curvature by introducing a squared term into
our model. The following model allows for some curvature in the relationship
between Expired ventilation (E) and Oxygen uptake (O).

E = β0 + β1O + β2O
2 + ε

• Categorical predictors

– We can represent a categorical predictor by the use of dummy variables. For
example, suppose we have some data on gas consumption and temperature for
several weeks before and after the installation of roof insulation. The period of
the data - before or after insulation - is a categorical variable with two possible
values. We introduce a dummy variable I which takes the value 0 for the before
and 1 for after. We can now extend our earlier model to. . .

G = β0 + β1T + β2I + ε

Our estimate of the coefficient β2 will give us an estimate of the change in gas
consumption resulting from the insulation.

• Allowing for interactions

– Sometimes the effect of one predictor will vary according to the setting of the
other one. In the example on roof insulation, the effect of temperature on gas
consumption may well become smaller after the insulation has been installed -
i.e. the effect of the predictor T will be less when I = 1 than when I = 0.

7



We can allow for an interactive effect by introducing a cross-product term in
T and I to give. . .

G = β0 + β1T + β2I + β3TI + ε

The cross-product term allows the coefficient of T to vary according to the
setting of I.

• Categorical response

– In a study of the relationship between heart disease and blood pressure, the
response is a binary categorical variable with the two values ‘Patient has heart
disease’ and ‘Patient does not have heart disease’. This kind of problem can be
handled using a technique known as logistic regression. For a brief introduction,
see Freund and Wilson (1998).

Sometimes, we have an ordinal response, with more than two categories. For
example, the quality of a patient’s life following treatment may take on the
values ‘Excellent’, ‘Good’, ‘Fair’ or ‘Poor’. This kind of problem can be handled
by a related technique, known as ordinal logistic regression. For details, see
Agresti (2002).
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