

Week 6: More Integration, Trigonometric Functions

Try these exercises now, do not use a calculator, and try to solve the exercises without help

1. Evaluate the following integral using partial fractions

$$\int \frac{x^2 + 4}{3x^3 + 4x^2 - 4x} dx$$

2. Evaluate the following integral using partial fractions

$$\int \frac{2x}{(x-1)^2(x+1)} dx$$

- 3. Evaluate the following integral
 - (a) Use the substitution $x = u^2$, u > 0, to show that $\int \frac{1}{x(2\sqrt{x}-1)} dx = \int \frac{2}{u(2u-1)} du$
 - (b) Hence show that $\int_{1}^{9} \frac{1}{x(2\sqrt{x}-1)} dx = 2\ln(\frac{a}{b})$ where a and b are to be determined.
- 4. Convert each angle from radians to degrees, giving your answers to 1 decimal place:
 - a) 2radiants b) 0.5radiants c) $\frac{\pi}{4}$ radiants d) $\frac{5\pi}{3}$ radiants e) 0.742 radiants
- 5. Convert to radiants
 - a) 120° b) 135° c) 450°s
- 6. Using the formula $s = r\theta$, calculate the angle θ in each of the following circular sectors:

7. Sketch, over $0 < \theta < 2\pi$ the graph of sin 2 θ . Mark the horizontal axis in radiants. Write down the period of sin θ .