

Week 5: Calculus

Try these exercises now, do not use a calculator, and try to solve the exercises without help

- 1. What does the notation $\frac{dy}{dx}$ mean if you consider the graph of the function $y = x^2 + 2x 1$?
- 2. Find $\frac{dy}{dx}$ for each of these functions: (a) $y = x^2 + 2x$ (b) $y = 5x^3 1$
- 3. Calculate the gradient of the curve $y = x^2 + 2x 1$ when x = 0, x = 2 and x = -1
- 4. Find $\frac{dy}{dx}$ for the curve $y = x^2 3x$. For what value of x is the gradient equal to 0?
- 5. Use a table of derivatives to find $\frac{dz}{dt}$ when z is given by:
 - (a) $z = 5t^3$
 - (b) $z = \sqrt{t}$
 - (c) $z = 3\sin(t)$
 - (d) $z = 4e^{2t}$
- 6. Differentiate $y = 6\sin(2x) + 3x^2 5e^{3x}$
- 7. If $\frac{dy}{dx} = 2x + 5x^4 + 3$, integrate the expression to find y.
- 8. What is the constant of integration and why do you need it?
- 9. Integrate with respect to x (a) $x^5 2x^3$ (b) $\frac{1}{x^4}$
- 10. Find (a) $\int x^3 dx$ (b) $\int cos2t dt$