

Week 5: More Calculus, Integration

Try these exercises now, do not use a calculator, and try to solve the exercises without help

- 1. In each case, find any values of x for which $\frac{dy}{dx} = 0$
 - y = x² + 6x y = 4x² + 2x + 1 y = x³ - 12xy = 4 + 9x² - x³
- 2. Find the coordinates of any stationary points on each curve.
 - $y = x^2 + 2x$ $y = 5x^2 4x + 1$
- 3. The diagram shows a closed plastic cylinder used for making compost.

The radius of the base and the height of the cylinder are r cm and h cm respectively and the surface area of the cylinder is $30\ 000\ \text{cm}^2$

- (a) Show that the volume of the cylinder, $V \text{ cm}^3$, is given by $V = 15000 \pi r^3$.
- (b) Find the maximum volume of the cylinder and show that your value is a maximum.
- 4. Integrate with respect to y: $y^{\frac{1}{2}}$
- 5. Find $\int y \, dx$ when
 - (a) $y = 3x^2 x + 6$
 - (b) $y = x^6 x^3 + 2x 5$
 - (c) $\sin 2x + 3\cos 3x$
 - (d) $y = -e^{2x} + \frac{4}{x}$
- 6. The diagram shows the curve with the equation $y = x^3 5x^2 + 6x$.

- (a) Find the coordinates of the points where the curve crosses the x-axis.
- (b) Show that the total area of the shaded regions enclosed by the curve and the x-axis is $3\frac{1}{12}$
- 7. Evaluate
 - (a) $\int_2^3 \frac{1}{x^2} dx;$
 - (b) $\int_0^{\frac{\pi}{3}} \cos 2x dx;$
 - (c) $\int_1^3 e^{2t} dt$.