

Week 4: Exponentials and Logarithms

Solutions

- 1. Simplify the expression $\frac{(5a^m)^2a^2}{(a^3)^2}$ Solution: $25a^{2m-4}$
- Use a calculator to evaluate (a) e¹ (b) e⁵ (c) e⁻⁵ (d) e⁰
 Solution: To 4 s.f. (a) 2.718, (b) 148.4 (c) 0.006738 (d) 1
- 3. Calculate the values of the functions $\cosh(x) = \frac{e^x + e^{-x}}{2}$ and $\sinh(x) = \frac{e^x e^{-x}}{2}$ for x = 1, 0 and -1**Solution:** $\cosh(1) = 1.543$, $\sinh(1) = 1.175$, $\cosh(0) = 1$, $\sinh(0) = 0$, $\cosh(-1) = 1.543$, $\sinh(-1) = -1.175$
- 4. Rewrite (a) $y = a^b$ in terms of logarithms, and (b) $\log_x(y) = p$ in exponential form Solution: (a) $\log_a y = b$, (b) $x^p = y$
- 5. Which of the following expressions are equivalent?

 $a = x^{b} \quad b = x^{a} \quad x = a^{b} \quad \log_{x}(a) = b \quad \log_{a}(x) = b \quad \log_{x}(b) = a$ Solution: $a = x^{b} \text{ and } \log_{x}(a) = b$ $b = x^{a} \text{ and } \log_{x}(b) = a$ $x = a^{b} \text{ and } \log_{a}(x) = b$ 6. Write $\ln(c) = d$ in exponential form.

Solution: $e^d = c$

- 7. Simplify (without using a calculator) $\log_{10}(\frac{1}{10}) \log_{10}(\frac{10}{27}) + \log_{10}(1000)$ Solution: $1 + \log_{10} 27$
- 8. Simplify (without using a calculator) $2\ln(3) + \ln(4) 2\ln(6)$ Solution: $\ln(1) = 0$
- 9. Simplify $a^{\log_a x}$ and $e^{\ln x}$ Solution: $a^{\log_a x} = x$ and $e^{\ln x} = x$
- 10. Solve for n by taking logs of both sides of the equation $1.04^n = 2$ Solution: n = 17.67