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Learning 

In this Workbook you will learn about integration and about some of the common techniques
employed to obtain integrals. You will learn that integration is the inverse operation to
differentiation and will also appreciate the distinction between a definite and an indefinite
integral. You will understand how a definite integral is related to the area under a curve.
You will understand how to use the technique of integration by parts to obtain integrals
involving the product of functions. You will also learn how to use partial fractions and
trigonometric identities in integration.
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⌘13.1

Introduction

When a function f(x) is known we can di↵erentiate it to obtain its derivative
df

dx

. The reverse process

is to obtain the function f(x) from knowledge of its derivative. This process is called integration.
Applications of integration are numerous and some of these will be explored in subsequent Sections.
First, what is important is to practise basic techniques and learn a variety of methods for integrating
functions.

�

⇢

⇠

⇡
Prerequisites

Before starting this Section you should . . .

• thoroughly understand the various techniques
of di↵erentiation

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• evaluate simple integrals by reversing the
process of di↵erentiation

• use a table of integrals

• explain the need for a constant of integration
when finding indefinite integrals

• use the rules for finding integrals of sums of
functions and constant multiples of functions
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1. Integration as differentiation in reverse
Suppose we di↵erentiate the function y = x

2. We obtain
dy

dx

= 2x. Integration reverses this process

and we say that the integral of 2x is x

2. Pictorially we can regard this as shown in Figure 1:

x2 2x

differentiate

integrate

Figure 1

The situation is just a little more complicated because there are lots of functions we can di↵erentiate
to give 2x. Here are some of them: x

2
+ 4, x

2 � 15, x

2
+ 0.5

All these functions have the same derivative, 2x, because when we di↵erentiate the constant term we
obtain zero. Consequently, when we reverse the process, we have no idea what the original constant
term might have been. So we include in our answer an unknown constant, c say, called the constant

of integration. We state that the integral of 2x is x

2
+ c.

When we want to di↵erentiate a function, y(x), we use the notation
d

dx

as an instruction to di↵er-

entiate, and write
d

dx

�
y(x)

�
. In a similar way, when we want to integrate a function we use a special

notation:

Z
y(x) dx.

The symbol for integration,

Z
, is known as an integral sign. To integrate 2x we write

∫
2x dx = x2 + c

integral
sign

this term is
called the
integrand there must always be a

term of the form dx

constant of integration

Note that along with the integral sign there is a term of the form dx, which must always be written,
and which indicates the variable involved, in this case x. We say that 2x is being integrated with

respect to x

x

x. The function being integrated is called the integrand. Technically, integrals of this
sort are called indefinite integrals, to distinguish them from definite integrals which are dealt with
subsequently. When you find an indefinite integral your answer should always contain a constant of
integration.

Exercises

1. (a) Write down the derivatives of each of: x

3
, x

3
+ 17, x

3 � 21

(b) Deduce that

Z
3x

2
dx = x

3
+ c.

2. Explain why, when finding an indefinite integral, a constant of integration is always needed.
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Answers

1. (a) 3x

2, 3x

2, 3x

2 (b) Whatever the constant, it is zero when di↵erentiated.

2. Any constant will disappear (i.e. become zero) when di↵erentiated so one must be reintroduced
to reverse the

process.

2. A table of integrals
We could use a table of derivatives to find integrals, but the more common ones are usually found
in a ‘Table of Integrals’ such as that shown below. You could check the entries in this table using
your knowledge of di↵erentiation. Try this for yourself.

Table 1: Integrals of Common Functions

function indefinite integral

f(x)

Z
f(x) dx

constant, k kx + c

x

1
2x

2
+ c

x

2 1
3x

3
+ c

x

n

x

n+1

n + 1

+ c, n 6= �1

x

�1 (or
1

x

) ln |x| + c

cos x sin x + c

sin x � cos x + c

cos kx

1

k

sin kx + c

sin kx �1

k

cos kx + c

tan kx

1

k

ln | sec kx|+c

ex ex

+ c

e�x �e�x

+ c

ekx

1

k

ekx

+ c

When dealing with the trigonometric functions the variable x must always be measured in radians
and not degrees. Note that the fourth entry in the Table, for x

n, is valid for any value of n, positive
or negative, whole number or fractional, except n = �1. When n = �1 use the fifth entry in the
Table.
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Example 1
Use Table 1 to find the indefinite integral of x

7: that is, find

Z
x

7
dx

Solution

From Table 1 note that

Z
x

n

dx =

x

n+1

n + 1

+ c. In words, this states that to integrate a power

of x, increase the power by 1, and then divide the result by the new power. With n = 7 we find
Z

x

7
dx =

1

8

x

8
+ c

Example 2
Find the indefinite integral of cos 5x: that is, find

Z
cos 5x dx

Solution

From Table 1 note that

Z
cos kx dx =

sin kx

k

+ c

With k = 5 we find

Z
cos 5x dx =

1

5

sin 5x + c

In Table 1 the independent variable is always given as x. However, with a little imagination you will
be able to use it when other independent variables are involved.

Example 3
Find

Z
cos 5t dt

Solution

We integrated cos 5x in the previous example. Now the independent variable is t, so simply use
Table 1 and replace every x with a t. With k = 5 we find

Z
cos 5t dt =

1

5

sin 5t + c

It follows immediately that, for example,
Z

cos 5! d! =

1

5

sin 5! + c,

Z
cos 5u du =

1

5

sin 5u + c and so on.

HELM (2008):
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Example 4
Find the indefinite integral of

1

x

: that is, find

Z
1

x

dx

Solution

This integral deserves special mention. You may be tempted to try to write the integrand as x

�1

and use the fourth row of Table 1. However, the formula

Z
x

n

dx =

x

n+1

n + 1

+ c is not valid when

n = �1 as Table 1 makes clear. This is because we can never divide by zero. Look to the fifth

entry of Table 1 and you will see

Z
x

�1
dx = ln |x| + c.

Example 5
Find

Z
12 dx and

Z
12 dt

Solution

In this Example we are integrating a constant, 12. Using Table 1 we find
Z

12 dx = 12x + c Similarly

Z
12 dt = 12t + c.

Task

Find

Z
t

4
dt

Your solution

AnswerZ
t

4
dt =

1

5

t

5
+ c.

6 HELM (2008):
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Task

Find

Z
1

x

5
dx using the laws of indices to write the integrand as x

�5 and then use

Table 1:

Your solution

Answer

�1

4

x

�4
+ c = � 1

4x

4
+ c.

Task

Find

Z
e�2x

dx using the entry in Table 1 for integrating ekx:

Your solution

Answer

With k = �2, we have
R

e�2x

dx = �1

2

e�2x

+ c.

Exercises

1. Integrate each of the following functions with respect to x:
(a) x

9, (b) x

1/2, (c) x

�3, (d) 1/x

4, (e) 4, (f)
p

x, (g) e4x

2. Find (a)

Z
t

2
dt, (b)

Z
6 dt, (c)

Z
sin 3t dt, (d)

Z
e7t

dt.

Answers

1 (a)
1

10

x

10
+ c, (b)

2

3

x

3/2
+ c, (c) �1

2

x

�2
+ c, (d) �1

3

x

�3
+ c, (e) 4x + c,

(f) same as (b), (g)
1

4

e4x

+ c

2. (a)
1

3

t

3
+ c, (b) 6t + c, (c) �1

3

cos 3t + c, (d)
1

7

e7t

+ c
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3. Some rules of integration
To enable us to find integrals of a wider range of functions than those normally given in a table of
integrals we can make use of the following rules.

The integral of k

k

k f

f

f(xxx) where k

k

k is a constant
A constant factor in an integral can be moved outside the integral sign as follows:

Key Point 1

Z
k f(x) dx = k

Z
f(x) dx

Example 6
Find the indefinite integral of 11x

2: that is, find

Z
11x

2
dx

Solution

Z
11x

2
dx = 11

Z
x

2
dx = 11

✓
x

3

3

+ c

◆
=

11x

3

3

+ K where K is a constant.

Example 7
Find the indefinite integral of �5 cos x; that is, find

Z
�5 cos x dx

Solution

Z
�5 cos x dx = �5

Z
cos x dx = �5 (sin x + c) = �5 sin x + K where K is a constant.

8 HELM (2008):
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The integral of f

f

f(x

x

x) +

+

+ g

g

g(x

x

x) and of f

f

f(x

x

x)��� g

g

g(x

x

x)

When we wish to integrate the sum or di↵erence of two functions, we integrate each term separately
as follows:

Key Point 2

Z
[ f(x) + g(x) ] dx =

Z
f(x) dx +

Z
g(x) dx

Z
[ f(x)� g(x) ] dx =

Z
f(x) dx�

Z
g(x) dx

Example 8
Find

Z
(x

3
+ sin x) dx

Solution

Z
(x

3
+ sin x) dx =

Z
x

3
dx +

Z
sin x dx =

1

4

x

4 � cos x + c

Note that only a single constant of integration is needed.

Task

Find

Z
(3t

4
+

p
t) dt

Use Key Points 1 and 2:

Your solution

Answer

3

5

t

5
+

2

3

t

3/2
+ c

HELM (2008):
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Task

The hyperbolic sine and cosine functions, sinh x and cosh x, are defined as follows:

sinh x =

ex � e�x

2

cosh x =

ex

+ e�x

2

Note that they are combinations of the exponential functions ex and e�x.
Find the indefinite integrals of sinh x and cosh x.

Your solutionZ
sinh x dx =

Z ✓
ex � e�x

2

◆
dx =

Z
cosh x dx =

Z ✓
ex

+ e�x

2

◆
dx =

AnswerZ
sinh x dx =

1

2

Z
ex

dx� 1

2

Z
e�x

dx =

1

2

ex

+

1

2

e�x

+ c =

1

2

�
ex

+ e�x

�
+ c = cosh x + c.

Similarly

Z
cosh x dx = sinh x + c.

Further rules for finding more complicated integrals are dealt with in subsequent Sections.

10 HELM (2008):
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Engineering Example 1

Electrostatic charge

Introduction

Electrostatic charge is important both where it is wanted, as in the electrostatic precipitator plate
systems used for cleaning gases, and where it is unwanted, such as when charge builds up on moving
belts. This Example is concerned with a charged object with a particular idealised shape - a sphere.
However, similar analytical calculations can be carried out for certain other shapes and numerical
methods can be used for more complicated shapes.
The electric field at all points inside and outside a charged sphere is given by

E(r) =

Qr

4⇡"0a
3

if r < a (1a)

E(r) =

Q

4⇡"0r
2

if r � a (1b)

where "0 is the permittivity of free space, Q is the total charge, a is the radius of the sphere, and r

is the radial distance between the centre of the sphere and a point of observation (see Figure 2).

Charged sphere

Spherical surface S

a
O
r

Figure 2: Geometry and symbols associated with the charged sphere

The electric field associated with electrostatic charge has a scalar potential. The electric field defined
by (1a) and (1b) shows only a radial dependence of position. Therefore, the electric scalar potential
V (r) is related to the field E(r) by

E(r) = �dV

dr

. (2)

Problem in words

A sphere is charged with a uniform density of charge and no other charge is present outside the
sphere in space. Determine the variation of electric potential with distance from the centre of the
sphere.

Mathematical statement of problem

Determine the electric scalar potential as a function of r, V (r), by integrating (2).

Mathematical analysis

Equation (2) yields V (r) as the negative of the indefinite integral of E(r).

HELM (2008):
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Z

dV =

Z
E(r) dr. (3)

Using (1a) and (1b) with (3) leads to

V (r) = � Q

4⇡"0a
3

Z
r dr if r < a (4a)

V (r) = � Q

4⇡"0

Z
dr

r

2
if r � a (4b)

Using the facts that

Z
r dr = r

2
/2 + c1 and

Z
dr

r

2
= �1

r

+ c2,

(4a) and (4b) become

V (r) = � Qr

2

8⇡"0a
3

+ c1 if r < a (5a)

V (r) =

Q

4⇡"0r
+ c2 if r � a (5b)

The integration constant c2 can be determined by assuming that the electric potential is zero at an
infinite distance from the sphere:

lim

r!1
[V (r)] = 0 ) lim

r!1


� Q

4⇡"0r

�
+ c2 = 0 ) c2 = 0.

The constant c1 can be determined by assuming that the potential is continuous at r = a.

From equation (5a)

V (a) = � Qa

2

8⇡"0a
3

+ c1

From equation (5b)

V (a) =

Q

4⇡"0a

Hence

c1 =

Q

4⇡"0a
+

2Q

8⇡"0a
=

3Q

8⇡"0a
.

Substituting for c1 in (5), the electric potential is obtained for all space is:

V (r) =

Q

4⇡"0

✓
3a

2 � r

2

2a

3

◆
if r < a.

V (r) =

Q

4⇡"0r
if r � a

Interpretation

The potential of the electrostatic field outside a charged sphere varies inversely with distance from
the centre of the sphere. Inside the sphere, the electrostatic potential varies with the square of the
distance from the centre.
An Engineering Exercise in 29.3 derives the corresponding expressions for the variation of the
electrostatic field and an Engineering Exercise in 27.4 calculates the potential energy due to
the charged sphere.

12 HELM (2008):
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Exercises

1. Find

Z
(2x� ex

) dx

2. Find

Z
3e2x

dx

3. Find

Z
1

3

(x + cos 2x) dx

4. Find

Z
7x

�2
dx

5. Find

Z
(x + 3)

2
dx, (be careful!)

Answers

1. x

2 � ex

+ c

2.
3

2

e2x

+ c

3.
1

6

x

2
+

1

6

sin 2x + c

4. �7

x

+ c

5.
1

3

x

3
+ 3x

2
+ 9x + c

HELM (2008):
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Definite Integrals
�
�

�
�13.2

Introduction
When you were first introduced to integration as the reverse of differentiation, the integrals you dealt
with were indefinite integrals. The result of finding an indefinite integral is usually a function plus a
constant of integration. In this Section we introduce definite integrals, so called because the result
will be a definite answer, usually a number, with no constant of integration. Definite integrals have
many applications, for example in finding areas bounded by curves, and finding volumes of solids.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand integration as the reverse of
differentiation

• be able to use a table of integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• find simple definite integrals

• handle some integrals involving an infinite
limit of integration

14 HELM (2008):
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1. Definite integrals

We saw in the previous Section that

∫
f(x) dx = F (x) + c where F (x) is that function which, when

differentiated, gives f(x). That is,
dF

dx
= f(x). For example,∫

sin(3x) dx = −cos(3x)

3
+ c

Here, f(x) = sin(3x) and F (x) = −1
3
cos(3x) We now consider a definite integral which is simply

an indefinite integral but with numbers written to the upper and lower right of the integral sign. The
quantity∫ b

a

f(x) dx

is called the definite integral of f(x) from a to b. The numbers a and b are known as the lower
limit and upper limit respectively of the integral. We define∫ b

a

f(x) dx = F (b)− F (a)

so that a definite integral is usually a number. The meaning of a definite integral will be developed
in later Sections. For the present we concentrate on the process of evaluating definite integrals.

2. Evaluating definite integrals
When you evaluate a definite integral the result will usually be a number. To see how to evaluate a
definite integral consider the following Example.

Example 9
Find the definite integral of x2 from 1 to 4; that is, find

∫ 4

1

x2 dx

Solution∫
x2 dx = 1

3
x3 + c

Here f(x) = x2 and F (x) = x3

3
. Thus, according to our definition∫ 4

1

x2 dx = F (4)− F (1) =
43

3
− 13

3
= 21

HELM (2008):
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Writing F (b)− F (a) each time we calculate a definite integral becomes laborious so we replace this

difference by the shorthand notation

[
F (x)

]b

a

. Thus

[
F (x)

]b

a

≡ F (b)− F (a)

Thus, from now on, we shall write∫ b

a

f(x) dx =

[
F (x)

]b

a

so that, for example∫ 4

1

x2 dx =

[
x3

3

]4

1

=
43

3
− 13

3
= 21

Example 10
Find the definite integral of cos x from 0 to

π

2
; that is, find

∫ π/2

0

cos x dx.

Solution

Since
∫

cos x dx = sin x + c then∫ π/2

0

cos x dx =

[
sin x

]π/2

0

= sin
(π

2

)
− sin 0 = 1− 0 = 1

Always remember, that if you use a calculator to evaluate any trigonometric functions, you must
work in radian mode.

Task

Find the definite integral of x2 + 1 from 1 to 2; that is; find

∫ 2

1

(x2 + 1) dx

First perform the integration:

Your solution

Answer[
1

3
x3 + x

]2

1

.

16 HELM (2008):
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Now insert the limits of integration, the upper limit first, and hence evaluat the integral:

Your solution

Answer(
8

3
+ 2

)
−

(
1

3
+ 1

)
=

10

3
or 3.333 (3 d.p.).

Task

Find

∫ 1

2

(x2 + 1) dx.

This Task is very similar to the previous Task. Note the limits have been interchanged:

Your solution

Answer[
1

3
x3 + x

]1

2

=

[
1

3
+ 1

]
−

[
8

3
+ 2

]
= −10

3
.

Note from these two Tasks that interchanging the limits of integration, changes the sign of the
answer.

Key Point 3

If you interchange the limits, you must change the sign:∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

HELM (2008):
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Task

When a spring is fixed at one end and stretched at the free end it exerts a restoring
force that is proportional to the displacement of the free end. The constant
of proportionality k N m−1 is known as the stiffness of the spring. Calculate
the work done in stretching a spring with stiffness k from displacement x1 m to
displacement x2 m (x2 > x1) given that the work done (W ) is the product of
force and displacement.

Your solution

Answer
The restoring force varies during the displacement. So the work done during the extension cannot
be determined from a single simple product.

Consider a small element ∆x of the extension beyond an arbitrary displacement x. The element is
sufficiently small that the force during the displacement can be regarded as constant and equal to
the force at displacement x is kx. So the work done ∆W in extending the spring from displacement
x to displacement x + ∆x is approximately kx∆x.

Using the idea of integration as a limit of a sum, in this case as ∆x tends to zero,

W =

∫ x2

x1

kx dx =

[
1

2
kx2

]x2

x1

=
1

2
k(x2

2 − x2
1)

Exercises

1. Evaluate (a)

∫ 1

0

x2 dx, (b)

∫ 3

2

1

x2
dx (c)

∫ 2

1

ex dx (d)

∫ 1

−1

(1 + t2) dt

2. Find (a)

∫ π/3

0

cos 2x dx (b)

∫ π

0

sin x dx (c)

∫ 3

1

e2t dt

Answers

1. (a)
1

3
(b)

1

6
(c) e2 − e1 = 4.671 (d) 2.667

2 (a)
√

3/4 = 0.4330 (b) 2 (c) 198.019

18 HELM (2008):
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Engineering Example 2

Torsion of a mild-steel bar

Introduction

For materials such as mild-steel, the relationship between applied shear stress and shear strain (de-
formation) can be described as follows.

• For small values of the shear strain, the shear stress (τ) and shear strain (ω) are proportional
to one another, i.e.

ω =
1

G
× τ (1)

(where G is the shear modulus). This is known as elastic behaviour.

• There is a maximum shear stress that the material is capable of supporting. If the shear
strain is increased further, the shear stress remains roughly constant. This is known as plastic
behaviour.

Figure 3 summarises the relationship between shear stress and shear strain; the point (ω
Y
, τ

Y
) is

known as the yield point.

-

6

�
�
�
�
�
�
��

p p p p p p

pppp
pppp
ppp

ω
Y

ω

shear strain

τ
Y

τ

shear
stress

Figure 3

Now suppose that one end of a bar of circular cross section is twisted through an angle θ, then the
shear strain on the surface is given by

ω
S

=
R θ

L
(2)

(where R and L are the radius and length of the bar respectively), while the shear strain, at a distance
r from the central core, is given by

ω =
r θ

L
(3)

The torque transmitted by a bar is given by the integral

T =

∫ R

0

2π r2 τ(r) dr (4)

HELM (2008):
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As the shear strain is a function of distance from the central axis of the bar, it may be that the shear
strain on the surface is greater than the critical shear strain ω

Y
. In this scenario the shear stress is

given by

τ =


τ

Y

ω
Y

ω ω ≤ ω
Y

τ
Y

ω > ω
Y

(5)

i.e. the regions near the central axis exhibit elasticity, but in those regions near the surface the elastic
limit has been exceeded and the metal exhibits plasticity (see Figure 4).

elastic
zone

plastic zone

τ

τY

0

re

R

re R

Figure 4

Problem in words

Find an expression for the torque transmitted by a bar as a function of the angle θ through which
one end is turned.

Mathematical statement of problem

Using Equations (3) to (5), find a formula for T in terms of the variable θ.

Mathematical analysis

Substituting (3) into (5)

τ =


τ

Y

ω
Y

r θ

L

r θ

L
≤ ω

Y

τ
Y

r θ

L
> ω

Y

=


τ

Y

ω
Y

r θ

L
r ≤

L ω
Y

θ
= re

τ
Y

r >
L ω

Y

θ
= re

20 HELM (2008):
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For small values of θ, re ≥ R so that the whole of the bar will be in the elastic region, i.e.

τ =
τ

Y

ω
Y

r θ

L

Now (4) becomes

T =

∫ R

0

2π r2 τ
Y

ω
Y

r θ

L
dr = 2π

τ
Y

ω
Y

θ

L

∫ R

0

r3 dr = 2π
τ

Y

ω
Y

θ

L

[
r4

4

]R

0

=
π

2

τ
Y

ω
Y

θ

L
R4 (6)

i.e. the torque is directly proportional to the twist, θ.

For larger θ, re < R, so that (4) becomes

T =

∫ re

0

2π r2 τ
Y

ω
Y

r θ

L
dr +

∫ R

re

2π r2 τ
Y

dr

= 2π
τ

Y

ω
Y

θ

L

∫ re

0

r3 dr + 2π τ
Y

∫ R

re

r2 dr

= 2π
τ

Y

ω
Y

θ

L

[
r4

4

]re

0

+ 2π τ
Y

[
r3

3

]R

re

=
π

2

τ
Y

ω
Y

θ

L
r4
e +

2π

3
τ

Y

(
R3 − r3

e

)
But re = L ω

Y
/θ, so

T =
π

2

τ
Y

ω
Y

θ

L

L4 ω4

Y

θ4
+

2π

3
τ

Y
R3 − 2π

3
τ

Y

L3 ω3

Y

θ3

=
2π

3
τ

Y
R3 + π

(
1

2
τ

Y
− 2

3
τ

Y

)
L3 ω3

Y

θ3

=
2π

3
τ

Y
R3 − π

6
τ

Y

L3 ω3

Y

θ3
(7)

Equation (6) will apply when re ≥ R, i.e. (L ω
Y
/θ) ≥ R or θ ≤ (L ω

Y
/R), so that combining (6)

and (7) gives overall

T =


π

2

τ
Y

ω
Y

θ

L
R4 θ ≤

L ω
Y

R

2π

3
τ

Y
R3 − π

6
τ

Y

L3 ω3

Y

θ3
θ >

L ω
Y

R

(8)

Interpretation and further comment

At the critical value of θ, i.e. when the outer edge begins to exhibit plasticity, both formulae in (8)
give

Tcrit =
π

2
τ

Y
R3

Furthermore, the first derivatives are both

dT

dθ
=

π

2

τ
Y

ω
Y

R4

L
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i.e. the curves join smoothly.

The second derivatives, though, are not equal (zero in one case). In the theoretical limit as θ →∞

T =
2π

3
τ

Y
R3

so this is the total torsional torque which can be carried by the bar. (The critical torque above is
three-quarters of this value.) However, clearly θ → ∞ is merely a theoretical limit since the bar
would, in fact, shear at a finite value of θ.

3. Some integrals with infinite limits
On occasions, and notably when dealing with Laplace and Fourier transforms, you will come across
integrals in which one of the limits is infinite. We avoid a rigorous treatment of such cases here and
instead give some commonly occurring examples.

Example 11
Find the definite integral of e−x from 0 to ∞; that is, find

∫ ∞

0

e−x dx.

Solution

The integral is found in the normal way:

∫ ∞

0

e−x dx =

[
− e−x

]∞
0

There is no difficulty in evaluating the square bracket at the lower limit. We obtain simply −e−0 =
−1. At the upper limit we must examine the behaviour of −e−x as x gets infinitely large. This is
where it is important that you are familiar with the properties of the exponential function. If you
refer to the graph (Figure 5) you will see that as x tends to infinity e−x tends to zero.

Consequently the contribution to the integral from the upper limit is zero. So

x

e−x

∫ ∞

0

e−xdx =
[
−e−x

]∞
0

= (−e−∞) − (−e−0)
= (0) − (−e−0)
= 1

Figure 5

Thus the value of

∫ ∞

0

e−x dx is 1.

Another way of achieving this result is as follows:

We change the infinite limit to a finite limit, b, say and then examine the behaviour of the integral
as b tends to infinity, written as
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∫ ∞

0

e−x dx = lim
b→∞

∫ b

0

e−x dx

Now,

∫ b

0

e−x dx =

[
− e−x

]b

0

=
(
−e−b

)
−

(
−e−0

)
= −e−b + 1

Then as b tends to infinity −e−b tends to zero, and the resulting integral has the value 1, as before.
Many integrals having infinite limits cannot be evaluated in a simple way like this, and many cannot
be evaluated at all. Fortunately, most of the integrals you will meet will exhibit the sort of behaviour
seen in the last example.

Exercise

Evaluate (a)

∫ ∞

1

e−x dx (b)

∫ ∞

0

e−2x dx (c)

∫ ∞

2

e−3x dx (d)

∫ ∞

1

4

t2
dt

Answer

(a) e−1 ∼ 0.368 (b) 1
2

(c) 1
3
e−6 = 0.0008 (4 d.p.) (d) 4
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The Area Bounded
by a Curve

�
�

�
�13.3

Introduction
One of the important applications of integration is to find the area bounded by a curve. Often such
an area can have a physical significance like the work done by a motor, or the distance travelled by
a vehicle. In this Section we explain how such an area is calculated.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• understand integration as the reverse of
differentiation

• be able to use a table of integrals

• be able to evaluate definite integrals

• be able to sketch graphs of common
functions including polynomials, simple
rational functions, exponential functions and
trigonometric functions

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• find the area bounded by a curve and the
x-axis

• find the area between two curves
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1. Calculating the area under a curve
Let us denote the area under y = f(x) between a fixed point a and a variable point x by A(x):

a x

area is A(x)

x

y = f(x)
y

Figure 6
A(x) is clearly a function of x since as the upper limit changes so does the area. How does the area
change if we change the upper limit by a very small amount δx? See Figure 7 below.

a xx

y = f(x)
y

area is A(x+δx)

x + δx

f(x) A(x)

Figure 7
To a good approximation the change in the area is:

A(x + δx)− A(x) ≈ f(x)δx

[This is because the shaded area is approximately a rectangle with base δx and height f(x).] This
approximation gets better and better as δx gets smaller and smaller. Rearranging gives:

f(x) ≈ A(x + δx)− A(x)

δx

Clearly, in the limit as δx → 0 we have

f(x) = lim
δx→0

A(x + δx)− A(x)

δx

But this limit on the right-hand side is the derivative of A(x) with respect to x so

f(x) =
dA(x)

dx

Thus A(x) is an indefinite integral of f(x) and we can therefore write:

A(x) =

∫
f(x)dx

Now the area under the curve from a to b is clearly A(b) − A(a). But remembering our shorthand
notation for this difference, introduced in the last Section we have, finally

A(b)− A(a) ≡
[

A(x)

]b

a

=

∫ b

a

f(x)dx

We conclude that the area under the curve y = f(x) from a to b is given by the definite integral of
f(x) from a to b.
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2. The area bounded by a curve lying above the x-axis
Consider the graph of the function y = f(x) shown in Figure 8. Suppose we are interested in
calculating the area underneath the graph and above the x-axis, between the points where x = a
and x = b. When such an area lies entirely above the x-axis, as is clearly the case here, this area is
given by the definite integral

∫ b

a
f(x) dx.

a b

y

x

area required

y = f(x)

Figure 8

Key Point 4

The area under the curve y = f(x), between x = a and x = b is given by

∫ b

a

f(x) dx

when the curve lies entirely above the x-axis between a and b.

Example 12
Calculate the area bounded y = x−1 and the x-axis, between x = 1 and x = 4.

Solution

Below is a graph of y = x−1. The area required is shaded; it lies entirely above the x-axis.

y =
1
x

y

x
1 2 3 4 5O

1
area required

Figure 9

area =

∫ 4

1

1

x
dx =

[
ln |x|

]4

1

= ln 4− ln 1 = ln 4 = 1.386 (3 d.p.)
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Task

Find the area bounded by the curve y = sin x and the x-axis between x = 0 and
x = π. (The required area is shown in the figure. Note that it lies entirely above
the x-axis.)

y =sinxy

xπO

area required

Your solution

Answer∫ π

0

sin x dx =

[
− cos x

]π

0

= 2.

Task

Find the area under f(x) = e2x from x = 1 to x = 3 given that the exponential
function e2x is always positive.

Your solution

Answer

area =

∫ 3

1

e2xdx =

[
1

2
e2x

]3

1

= 198 to 3 significant figures.
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Example 13
The figure shows the graphs of y = sin x and y = cos x for 0 ≤ x ≤ 1

2
π. The two

graphs intersect at the point where x = 1
4
π. Find the shaded area.

y =sinx

y =cosx
y

x
π
2

area required

Figure 10

Solution

To find the shaded area we could calculate the area under the graph of y = sin x for x between
0 and 1

4
π, and subtract this from the area under the graph of y = cos x between the same limits.

Alternatively the two processes can be combined into one and we can write

shaded area =

∫ π/4

0

(cos x− sin x)dx

=

[
sin x + cos x

]π/4

0

=
(
sin 1

4
π + cos 1

4
π
)
− (sin 0 + cos 0)

= (
1√
2

+
1√
2
)− (0 + 1) =

2√
2
− 1 =

√
2− 1

So the numeric value of the integral is 2√
2
− 1 = 0.414 to 3 d.p.. (Alternatively you can use your

calculator to obtain this result directly by evaluating sin
π

4
and cos

π

4
.)

Exercises

In each question you should check that the required area lies entirely above the horizontal axis.

1. Find the area under the curve y = 7x2 and above the x-axis between x = 2 and x = 5.
2. Find the area bounded by the curve y = x3 and the x-axis between x = 0 and x = 2.
3. Find the area bounded by the curve y = 3t2 and the t-axis between t = −3 and t = 3.
4. Find the area under y = x−2 between x = 1 and x = 10.

Answer

1. 273, 2. 4, 3. 54, 4. 0.9.
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3. The area bounded by a curve, not entirely above the x-axis
Figure 11 shows a graph of y = −x2 + 1.

y =−x2+1

x

y

-2 -1 1 2 3

area required

Figure 11
The shaded area is bounded by the x-axis and the curve, but lies entirely below the x-axis. Let us
evaluate the integral

∫ 2

1
(−x2 + 1)dx.

∫ 2

1

(−x2 + 1)dx =

[
−x3

3
+ x

]2

1

=

(
−23

3
+ 2

)
−

(
−13

3
+ 1

)
= −7

3
+ 1 = −4

3

The evaluation of the area yields a negative quantity. There is, of course, no such thing as a negative
area. The area is actually 4

3
, and the negative sign is an indication that the area lies below the x-axis.

(However, in applications of integration such as work/energy or distance travelled in a given direction
negative values can be meaningful.)

If an area contains parts both above and below the horizontal axis, care must be taken when calcu-
lating this area. It is necessary to determine which parts of the graph lie above the horizontal axis
and which lie below. Separate integrals need to be calculated for each ‘piece’ of the graph. This idea
is illustrated in the next Example.
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Example 14
Find the total area enclosed by the curve y = x3−5x2+4x and the x-axis between
x = 0 and x = 3.

Solution

We need to determine which parts of the graph lie above and which lie below the x-axis. To do this
it is helpful to consider where the graph cuts the x-axis. So we consider the function x3− 5x2 + 4x
and look for its zeros

x3 − 5x2 + 4x = x(x2 − 5x + 4) = x(x− 1)(x− 4)

So the graph cuts the x-axis when x = 0, x = 1 and x = 4. Also, when x is large and positive,
y is large and positive since the term involving x3 dominates. When x is large and negative, y is
large and negative for the same reason. With this information we can sketch a graph showing the
required area:

y =x3−5x2+4x

y

x1 2 3 4

area required

Figure 12

From the graph we see that the required area lies partly above the x-axis (when 0 ≤ x ≤ 1) and
partly below (when 1 ≤ x ≤ 3). So we evaluate the integral in two parts: Firstly:∫ 1

0

(x3 − 5x2 + 4x)dx =

[
x4

4
− 5x3

3
+

4x2

2

]1

0

=

(
1

4
− 5

3
+ 2

)
− (0) =

7

12

This is the part of the required area which lies above the x-axis. Secondly:∫ 3

1

(x3 − 5x2 + 4x)dx =

[
x4

4
− 5x3

3
+

4x2

2

]3

1

=

(
81

4
− 135

3
+ 18

)
−

(
1

4
− 5

3
+ 2

)
= −22

3

This represents the part of the required area which lies below the x-axis. The actual area is 22
3
.

Combining the results of the two separate calculations we can find the total area bounded by the
curve:

area =
7

12
+

22

3
=

95

12
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Task

(a) Sketch the graph of y = sin 2x for 0 ≤ x ≤ π.
(b) Find the total area bounded by the curve and the x-axis between x = 1

3
π

and x = 3
4
π.

(a) Sketch the graph and indicate the required area noting where the graph crosses the x-axis:

Your solution

Answer

y =sin x

y

x
π

π
2

2

π
3

π
4
3

(b) Perform the integration in two parts to obtain the required area:

Your solution

Answer∫ π/2

π/3

sin 2x dx =
1

4
and

∫ 3π/4

π/2

sin 2xdx = −1

2
.

The required area is
1

4
+

1

2
=

3

4
.
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Exercises

1. Find the total area enclosed between the x-axis and the curve y = x3 between x = −1 and
x = 1.

2. Find the area under y = cos 2t from t = 0 to t = 0.5.

3. Find the area enclosed by y = 4− x2 and the x axis

(a) from x = 0 to x = 2, (b) from x = −2 to x = 1, (c) from x = 1 to x = 3.

4. Calculate the area enclosed by the curve y = x3 and the line y = x.

5. Find the area bounded by y = ex, the y-axis and the line x = 2.

6. Find the area enclosed between y = x(x− 1)(x− 2) and the x axis.

Answers

1. 0.5 2. 0.4207 3. (a) 16
3
, (b) 9, (c) 4 4. 0.5 5. e2 − 1 6. 1

2
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Integration by Parts
�
�

�
�13.4

Introduction
Integration by Parts is a technique for integrating products of functions. In this Section you will learn
to recognise when it is appropriate to use the technique and have the opportunity to practise using
it for finding both definite and indefinite integrals.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• understand what is meant by definite and
indefinite integrals

• be able to use a table of integrals

• be able to differentiate and integrate a range
of common functions'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• decide when it is appropriate to use the
method known as integration by parts

• apply the formula for integration by parts to
definite and indefinite integrals

• perform integration by parts repeatedly if
appropriate
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1. Indefinite integration
The technique known as integration by parts is used to integrate a product of two functions, such
as in these two examples:

(i)

∫
e2x sin 3x dx (ii)

∫ 1

0

x3e−2x dx

Note that in the first example, the integrand is the product of the functions e2x and sin 3x, and in
the second example the integrand is the product of the functions x3 and e−2x. Note also that we
can change the order of the terms in the product if we wish and write

(i)

∫
(sin 3x) e2xdx (ii)

∫ 1

0

e−2x x3 dx

What you must never do is integrate each term in the product separately and then multiply - the
integral of a product is not the product of the separate integrals. However, it is often possible to
find integrals involving products using the method of integration by parts - you can think of this as
a product rule for integrals.
The integration by parts formula states:

Key Point 5

Integration by Parts for Indefinite Integrals

For indefinite integrals, given functions f(x) and g(x):∫
f · g dx = f ·

∫
g dx−

∫ (
df

dx
·
∫

gdx

)
dx

Alternatively, given functions u and v:∫
u

dv

dx
dx = u.v −

∫
v
du

dx
dx

Study the formula carefully and note the following observations. Firstly, to apply the formula we must

be able to differentiate the function f to find
df

dx
, and we must be able to integrate the function, g.

Secondly the formula replaces one integral, the one on the left, with a different integral, that on the
far right. The intention is that the latter, whilst it may look more complicated in the formula above,
is simpler to evaluate. Consider the following Example:
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Example 15
Find the integral of the product of x with sin x; that is, find

∫
x sin x dx.

Solution

Compare the required integral with the formula for integration by parts: we choose

f = x and g = sin x

It follows that

df

dx
= 1 and

∫
g dx =

∫
sin x dx = − cos x

(When integrating g there is no need to worry about a constant of integration. When you become
confident with the method, you may like to think about why this is the case.)

Applying the formula we obtain∫
x sin x dx = f ·

∫
g dx−

∫ (
df

dx
·
∫

gdx

)
dx

= x(− cos x)−
∫

1(− cos x) dx

= −x cos x +

∫
cos x dx = −x cos x + sin x + c

Task

Find

∫
(5x + 1) cos 2x dx.

Let f = 5x + 1 and g = cos 2x. Now calculate
df

dx
and

∫
g dx:

Your solution

Answer
df

dx
= 5 and

∫
cos 2x dx =

1

2
sin 2x.

Substitute these results into the formula for integration by parts and complete the Task:

Your solution
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Answer

(5x + 1)(
1

2
sin 2x)−

∫
5(

1

2
sin 2x)dx =

1

2
(5x + 1) sin 2x +

5

4
cos 2x + c

Sometimes it is necessary to apply the formula more than once, as the next Example shows.

Example 16
Find

∫
2x2e−xdx

Solution

We let f = 2x2 and g = e−x. Then
df

dx
= 4x and

∫
gdx = −e−x

Using the formula for integration by parts we find∫
2x2e−xdx = 2x2(−e−x)−

∫
4x(−e−x)dx = −2x2e−x +

∫
4xe−xdx

We now need to find
∫

4xe−xdx using integration by parts again. We get∫
4xe−xdx = 4x(−e−x)−

∫
4(−e−x)dx

= −4xe−x +

∫
4e−xdx = −4xe−x − 4e−x

Altogether we have∫
2x2e−xdx = −2x2e−x − 4xe−x − 4e−x + c = −2e−x(x2 + 2x + 2) + c

Exercises

In some questions below it will be necessary to apply integration by parts more than once.

1. Find (a)

∫
x sin(2x)dx, (b)

∫
te3tdt, (c)

∫
x cos x dx.

2. Find

∫
(x + 3) sin x dx.

3. By writing ln x as 1× ln x find

∫
ln x dx.

4. Find (a)

∫
tan−1 x dx, (b)

∫
−7x cos 3x dx, (c)

∫
5x2e3xdx,

5. Find (a)

∫
x cos kx dx, where k is a constant (b)

∫
z2 cos kz dz, where k is a constant.

6. Find (a)

∫
te−stdt where s is a constant, (b) Find

∫
t2e−stdt where s is a constant.
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Answers

1. (a)
1

4
sin 2x− 1

2
x cos 2x + c, (b) e3t(

1

3
t− 1

9
) + c, (c) cos x + x sin x + c

2. −(x + 3) cos x + sin x + c.

3. x ln x− x + c.

4. (a) x tan−1 x− 1

2
ln(x2 +1)+ c, (b) −7

9
cos 3x− 7

3
x sin 3x+ c, (c)

5

27
e3x(9x2− 6x+2)+ c,

5. (a)
cos kx

k2
+

x sin kx

k
+ c, (b)

2z cos kz

k2
+

z2 sin kz

k
− 2 sin kz

k3
+ c.

6. (a)
−e−st(st + 1)

s2
+ c, (b)

−e−st(s2t2 + 2st + 2)

s3
+ c.

2. Definite integration
When dealing with definite integrals the relevant formula is as follows:

Key Point 6

Integration by Parts for Definite Integrals
For definite integrals, given functions f(x) and g(x):∫ b

a

f · g dx =

[
f ·

∫
g dx

]b

a

−
∫ b

a

(
df

dx
·
∫

gdx

)
dx

Alternatively, given functions u and v:

∫ b

a

u
dv

dx
dx =

[
uv

]b

a

−
∫ b

a

v
du

dx
dx

Example 17
Find

∫ 2

0

xexdx.

Solution

We let f = x and g = ex. Then
df

dx
= 1 and

∫
g dx = ex. Using integration by parts we obtain∫ 2

0

xexdx =

[
xex

]2

0

−
∫ 2

0

1.exdx=2e2−
[

ex

]2

0

=2e2−[e2−1]=e2+1 (or 8.389 to 3 d.p.)

Sometimes it is necessary to apply the formula more than once as the next Example shows.
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Example 18
Find the definite integral of x2ex from 0 to 2; that is, find

∫ 2

0

x2exdx.

Solution

We let f = x2 and g = ex. Then
df

dx
= 2x and

∫
g dx = ex. Using integration by parts:∫ 2

0

x2exdx =

[
x2ex

]2

0

−
∫ 2

0

2xexdx = 4e2 − 2

∫ 2

0

xexdx

The remaining integral must be integrated by parts also but we have just done this in the example

above. So

∫ 2

0

x2exdx = 4e2 − 2[e2 + 1] = 2e2 − 2 = 12.778 (3 d.p.)

Task

Find

∫ π/4

0

(4− 3x) sin x dx.

What are your choices for f, g?

Your solution

Answer

Take f = 4− 3x and g = sin x.

Now complete the integral:

Your solution∫ π/4

0

(4− 3x) sin x dx =

Answer ∫ π/4

0

(4− 3x) sin x dx =

[
(4− 3x)(− cos x)

]π/4

0

− 3

∫ π/4

0

cos x dx

=

[
(4− 3x)(− cos x)

]π/4

0

− 3

[
sin x

]π/4

0

= 0.716 to 3 d.p.
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Exercises

1. Evaluate the following: (a)

∫ 1

0

x cos 2x dx, (b)

∫ π/2

0

x sin 2x dx, (c)

∫ 1

−1

te2tdt

2. Find

∫ 2

1

(x + 2) sin x dx

3. Find

∫ 1

0

(x2 − 3x + 1)exdx

Answers

1. (a) 0.1006, (b) π/4 = 0.7854, (c) 1.9488.

2. 3.3533.

3. −0.5634.
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Integration by
Substitution and Using
Partial Fractions

�
�

�
�13.5

Introduction
The first technique described here involves making a substitution to simplify an integral. We let
a new variable equal a complicated part of the function we are trying to integrate. Choosing the
correct substitution often requires experience. This skill develops with practice.

Often the technique of partial fractions can be used to write an algebraic fraction as the sum of simpler
fractions. On occasions this means that we can then integrate a complicated algebraic fraction. We
shall explore this approach in the second half of the section.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• be able to find a number of simple definite
and indefinite integrals

• be able to use a table of integrals

• be familiar with the technique of expressing
an algebraic fraction as the sum of its partial
fractions'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• make simple substitutions in order to find
definite and indefinite integrals

• understand the technique used for evaluating

integrals of the form

∫
f ′(x)

f(x)
dx

• use partial fractions to express an algebraic
fraction in a simpler form and integrate it

40 HELM (2008):
Workbook 13: Integration



®

1. Making a substitution
The technique described here involves making a substitution in order to simplify an integral. We let
a new variable, u say, equal a more complicated part of the function we are trying to integrate. The
choice of which substitution to make often relies upon experience: don’t worry if at first you cannot
see an appropriate substitution. This skill develops with practice. However, it is not simply a matter
of changing the variable - care must be taken with the differential form dx as we shall see. The
technique is illustrated in the following Example.

Example 19

Find

∫
(3x + 5)6dx.

Solution

First look at the function we are trying to integrate: (3x + 5)6. It looks quite complicated to
integrate. Suppose we introduce a new variable, u, such that u = 3x + 5. Doing this means that
the function we must integrate becomes u6. Would you not agree that this looks a much simpler
function to integrate than (3x + 5)6? There is a slight complication however. The new function of
u must be integrated with respect to u and not with respect to x. This means that we must take
care of the term dx correctly.

Long Method u = 3x + 5 so
du

dx
= 3, or

dx

du
=

1

3

Let I =

∫
(3x + 5)6 dx =

∫
u6 dx (substituting for 3x + 5)

=

∫
u6 dx

du
du (to change from x to u)

=

∫
u6 1

3
. du (substituting for

dx

du
)

=
1

3

∫
u6 dx =

u7

21
+ constant

Short Method u = 3x + 5 so
du

dx
= 3, so dx =

1

3
du

Let I =

∫
(3x + 5)6 dx =

∫
u6 dx =

∫
u6.

1

3
. du =

1

3

∫
u6 du =

u7

21
+ constant

To finish off we must rewrite this answer in terms of the original variable x and replace u by 3x+5:∫
(3x + 5)6dx =

(3x + 5)7

21
+ c
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In practice the short method is generally used but mathematicians don’t like to separate the ‘dx’

from the ‘du’ as in the statement ‘dx =
1

3
du’ as it is meaningless mathematically (but it works!). In

the future we will use the short method, with apologies to the mathematicians!

Task

By making the substitution u = sin x find

∫
cos x sin2 x dx

You are given the substitution u = sin x. Find
du

dx
:

Your solution

Answer
du

dx
= cos x

Now make the substitution, simplify the result, and finally perform the integration:

Your solution

Answer∫
cos x sin2 x dx simplifies to

∫
u2du. The final answer is

1

3
sin3 x + c.

Exercise

Use suitable substitutions to find

(a)

∫
(4x + 1)7dx (b)

∫
t2 sin(t3 + 1)dt (Hint: you need to simplify sin(t3 + 1))

Answer

(a)
(4x + 1)8

32
+ c (b) −cos(t3 + 1)

3
+ c
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2. Substitution and definite integration
If you are dealing with definite integrals (ones with limits of integration) you must be particularly
careful when you substitute. Consider the following example.

Example 20
Find the definite integral

∫ 3

2

t sin(t2)dt by making the substitution u = t2.

Solution

Note that if u = t2 then
du

dt
= 2t so that dt =

du

2t
. We find∫ t=3

t=2

t sin(t2)dt =

∫ t=3

t=2

t sin u
du

2t
=

1

2

∫ t=3

t=2

sin u du

An important point to note is that the limits of integration are limits on the variable t, not u. To
emphasise this they have been written explicitly as t = 2 and t = 3. When we integrate with respect
to the variable u, the limits must be written in terms of u. From the substitution u = t2, note that
when t = 2 then u = 4 and when t = 3 then u = 9 so the integral becomes

1

2

∫ u=9

u=4

sin u du =
1

2

[
− cos u

]9

4

=
1

2
(− cos 9 + cos 4) = 0.129 to 3 d.p.

Exercise

Use suitable substitutions to find (a)

∫ 2

1

(2x + 3)7dx, (b)

∫ 1

0

3t2et3dt.

Answer

(a) u = 2x + 3 is suitable; 3.359× 105 to 4 sig. figs. (b) 1.718 to 3 d.p.
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3. Integrals giving rise to logarithms

Example 21
Find

∫
3x2 + 1

x3 + x + 2
dx

Solution

Let us consider what happens when we make the substitution z = x3 + x + 2. Note that

dz

dx
= 3x2 + 1 so that we can write dz = (3x2 + 1)dx

Then∫
3x2 + 1

x3 + x + 2
dx =

∫
1

z
dz = ln |z|+ c = ln |x3 + x + 2|

Note that in the last Example, the numerator of the integrand (3x2 + 1) is the derivative of the
denominator (x3 + x + 2). The result is the logarithm of the denominator. This is a special case of
the following rule:

Key Point 7∫
f ′(x)

f(x)
dx = ln |f(x)|+ c

Note that it is the modulus of f(x) in the answer.

Task

Write down, purely by inspection, the following integrals:

(a)

∫
1

x + 1
dx, (b)

∫
2x

x2 + 8
dx, (c)

∫
1

x− 3
dx.

Hint: In each case the numerator of the integrand is the derivative of the denominator.

Your solution

(a) (b) (c)

Answer

(a) ln |x + 1|+ c, (b) ln |x2 + 8|+ c, (c) ln |x− 3|+ c
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Task

Evaluate the definite integral

∫ 4

2

3t2 + 2t

t3 + t2 + 1
dt.

Your solution

Answer[
ln |t3 + t2 + 1|

]4

2

= ln 81− ln 13 = 1.83

Sometimes it is necessary to make slight adjustments to the integrand to obtain a form for which
the rule in Key Point 7 is suitable. Consider the next Example.

Example 22
Find the indefinite integral

∫
x2

x3 + 1
dx.

Solution

In this Example the derivative of the denominator is 3x2 whereas the numerator is just x2. We
adjust the numerator as follows:∫

x2

x3 + 1
dx =

1

3

∫
3x2

x3 + 1
dx and integrate by the rule to get 1

3
ln |x3 + 1|+ c

Note that the sort of procedure in the last Example is only possible because we can move constant
factors through the integral sign. It would be wrong to try to move terms involving the variable x
in a similar way.

Exercise

Write down the result of finding the following integrals.

(a)

∫
1

x
dx, (b)

∫
2t

t2 + 1
dt, (c)

∫
1

2x + 5
dx, (d)

∫
2

3x− 2
dx.

Answer

(a) ln |x|+ c, (b) ln |t2 + 1|+ c, (c) 1
2
ln |2x + 5|+ c, (d) 2

3
ln |3x− 2|+ c.
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4. Integration using partial fractions
Sometimes expressions which at first sight look impossible to integrate using the techniques already
met may in fact be integrated by first expressing them as simpler partial fractions, and then using
the techniques described earlier in this Section. Consider the following Task.

Task

Express
23− x

(x− 5)(x + 4)
as the sum of its partial fractions.

Hence find

∫
23− x

(x− 5)(x + 4)
dx

First produce the partial fractions. Write the fraction in the form
A

x− 5
+

B

x + 4
and find A, B.

Your solution

Answer

A = 2, B = −3

Now integrate each term separately:

Your solution∫
23− x

(x− 5)(x + 4)
dx =

∫
A

x− 5
dx +

∫
B

x + 4
dx =

Answer

2 ln |x− 5| − 3 ln |x + 4|+ c
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Exercises

By expressing the following in partial fractions, evaluate each integral:

1.

∫
1

x3 + x
dx

2.

∫
13x− 4

6x2 − x− 2
dx

3.

∫
1

(x + 1)(x− 5)
dx

4.

∫
2x

(x− 1)2(x + 1)
dx

Answers

1. ln |x| − 1

2
ln |x2 + 1|+ c

2.
3

2
ln |2x + 1|+ 2

3
ln |3x− 2|+ c

3.
1

6
ln |x− 5| − 1

6
ln |x + 1|+ c

4. −1

2
ln |x + 1|+ 1

2
ln |x− 1| − 1

x− 1
+ c
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Integration of
Trigonometric
Functions

�
�

�
�13.6

Introduction
Integrals involving trigonometric functions are commonplace in engineering mathematics. This is
especially true when modelling waves and alternating current circuits. When the root-mean-square
(rms) value of a waveform, or signal is to be calculated, you will often find this results in an integral
of the form∫

sin2 t dt

In this Section you will learn how such integrals can be evaluated.

'
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%

Prerequisites
Before starting this Section you should . . .

• be able to find a number of simple definite
and indefinite integrals

• be able to use a table of integrals

• be familiar with standard trigonometric
identities�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use trigonometric identities to write
integrands in alternative forms to enable
them to be integrated
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1. Integration of trigonometric functions
Simple integrals involving trigonometric functions have already been dealt with in Section 13.1. See
what you can remember:

Task

Write down the following integrals:

(a)

∫
sin x dx, (b)

∫
cos x dx, (c)

∫
sin 2x dx, (d)

∫
cos 2x dx

Your solution

(a) (b)

(c) (d)

Answer

(a) − cos x + c, (b) sin x + c, (c) −1

2
cos 2x + c, (d)

1

2
sin 2x + c.

The basic rules from which these results can be derived are summarised here:

Key Point 8∫
sin kx dx = −cos kx

k
+ c

∫
cos kx dx =

sin kx

k
+ c

In engineering applications it is often necessary to integrate functions involving powers of the trigono-
metric functions such as∫

sin2 x dx or

∫
cos2 ωt dt

Note that these integrals cannot be obtained directly from the formulas in Key Point 8 above.
However, by making use of trigonometric identities, the integrands can be re-written in an alternative
form. It is often not clear which identities are useful and each case needs to be considered individually.
Experience and practice are essential. Work through the following Task.
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Task

Use the trigonometric identity sin2 θ ≡ 1

2
(1 − cos 2θ) to express the integral∫

sin2 x dx in an alternative form and hence evaluate it.

(a) First use the identity:

Your solution∫
sin2 x dx =

∫
Answer

The integral can be written

∫
1

2
(1− cos 2x)dx.

Note that the trigonometric identity is used to convert a power of sin x into a function involving
cos 2x which can be integrated directly using Key Point 8.

(b) Now evaluate the integral:

Your solution

Answer
1
2

(
x− 1

2
sin 2x + c

)
= 1

2
x− 1

4
sin 2x + K where K = c/2.

Task

Use the trigonometric identity sin 2x ≡ 2 sin x cos x to find

∫
sin x cos x dx

(a) First use the identity:

Your solution∫
sin x cos x dx =

∫
Answer

The integrand can be written as 1
2
sin 2x

(b) Now evaluate the integral:

Your solution

Answer∫ 2π

0

sin x cos x dx =

∫ 2π

0

1

2
sin 2x dx =

[
−1

4
cos 2x + c

]2π

0

= −1

4
cos 4π +

1

4
cos 0 = −1

4
+

1

4
= 0

This result is one example of what are called orthogonality relations.
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Engineering Example 3

Magnetic flux

Introduction

The magnitude of the magnetic flux density on the axis of a solenoid, as in Figure 13, can be found
by the integral:

B =

∫ β2

β1

µ0nI

2
sin β dβ

where µ0 is the permeability of free space (≈ 4π × 10−7 H m−1), n is the number of turns and I is
the current.

β1
β2

Figure 13: A solenoid and angles defining its extent

Problem in words

Predict the magnetic flux in the middle of a long solenoid.

Mathematical statement of the problem

We assume that the solenoid is so long that β1 ≈ 0 and β2 ≈ π so that

B =

∫ β2

β1

µ0nI

2
sin β dβ ≈

∫ π

0

µ0nI

2
sin β dβ

Mathematical analysis

The factor
µ0nI

2
can be taken outside the integral i.e.

B =
µ0nI

2

∫ π

0

sin β dβ =
µ0nI

2

[
− cos β

]π

0

=
µ0nI

2
(− cos π + cos 0)

=
µ0nI

2
(−(−1) + 1) = µ0nI

Interpretation

The magnitude of the magnetic flux density at the midpoint of the axis of a long solenoid is predicted
to be approximately µ0nI i.e. proportional to the number of turns and proportional to the current
flowing in the solenoid.
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2. Orthogonality relations
In general two functions f(x), g(x) are said to be orthogonal to each other over an interval a ≤ x ≤ b
if ∫ b

a

f(x)g(x) dx = 0

It follows from the previous Task that sin x and cos x are orthogonal to each other over the interval
0 ≤ x ≤ 2π. This is also true over any interval α ≤ x ≤ α + 2π (e.g. π/2 ≤ x ≤ 5π, or
−π ≤ x ≤ π).

More generally there is a whole set of orthogonality relations involving these trigonometric functions
on intervals of length 2π (i.e. over one period of both sin x and cos x). These relations are useful
in connection with a widely used technique in engineering, known as Fourier analysis where we
represent periodic functions in terms of an infinite series of sines and cosines called a Fourier series.
(This subject is covered in 23.)

We shall demonstrate the orthogonality property

Imn =

∫ 2π

0

sin mx sin nx dx = 0

where m and n are integers such that m 6= n.

The secret is to use a trigonometric identity to convert the integrand into a form that can be readily
integrated.

You may recall the identity

sin A sin B ≡ 1

2
(cos(A−B)− cos(A + B))

It follows, putting A = mx and B = nx that provided m 6= n

Imn =
1

2

∫ 2π

0

[cos(m− n)x− cos(m + n)x] dx

=
1

2

[
sin(m− n)x

(m− n)
− sin(m + n)x

(m + n)

]2π

0

= 0

because (m− n) and (m + n) will be integers and sin(integer×2π) = 0. Of course sin 0 = 0.

Why does the case m = n have to be excluded from the analysis? (left to the reader to figure out!)

The corresponding orthogonality relation for cosines

Jmn =

∫ 2π

0

cos mx cos nx dx = 0

follows by use of a similar identity to that just used. Here again m and n are integers such that
m 6= n.
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Example 23
Use the identity sin A cos B ≡ 1

2
(sin(A + B) + sin(A−B)) to show that

Kmn =

∫ 2π

0

sin mx cos nx dx = 0 m and n integers, m 6= n.

Solution

Kmn =
1

2

∫ 2π

0

[sin(m + n)x + sin(m− n)x] dx

=
1

2

[
−cos(m + n)x

(m + n)
− cos(m− n)x

(m− n)

]2π

0

= −1

2

[
cos(m + n)2π − 1

(m + n)
+

cos(m− n)2π − 1

(m− n)

]
= 0

(recalling that cos(integer× 2π) = 1)

Task

Derive the orthogonality relation

Kmn =

∫ 2π

0

sin mx cos nx dx = 0 m and n integers, m = n

Hint: You will need to use a different trigonometric identity to that used in Example
23.

Your solution
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Answer

Kmn =

∫ 2π

0

sin mx cos mx dx

Putting m = n 6= 0, and then using the identity sin 2A ≡ 2 sin A cos A we get

Kmm =

∫ 2π

0

sin mx cos mx dx

=
1

2

∫ 2π

0

sin 2mx dx

=
1

2

[
−cos 2mx

2m

]2π

0

= − 1

4m
(cos 4mπ − cos 0) = − 1

4m
(1− 1) = 0

Putting m = n = 0 gives K00 =
1

2

∫ 2π

0

sin 0 cos 0 dx = 0.

Note that the particular case m = n = 1 was considered earlier in this Section.

3. Reduction formulae
You have seen earlier in this Workbook how to integrate sin x and sin2 x (which is (sin x)2). Appli-
cations sometimes arise which involve integrating higher powers of sin x or cos x. It is possible, as
we now show, to obtain a reduction formula to aid in this Task.

Task

Given In =

∫
sinn(x) dx write down the integrals represented by I2, I3, I10

Your solution

I2 = I3 = I10 =

Answer

I2 =

∫
sin2 x dx I3 =

∫
sin3 x dx I10 =

∫
sin10 x dx

To obtain a reduction formula for In we write

sinn x = sinn−1(x) sin x

and use integration by parts.
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Task

In the notation used earlier in this Workbook for integration by parts (Key Point

5, page 31) put f = sinn−1 x and g = sin x and evaluate
df

dx
and

∫
g dx.

Your solution

Answer
df

dx
= (n− 1) sinn−2x cos x (using the chain rule of differentiation),∫

g dx =

∫
sin x dx = − cos x

Now use the integration by parts formula on

∫
sinn−1 x sin x dx. [Do not attempt to evaluate the

second integral that you obtain.]

Your solution

Answer ∫
sinn−1 x sin x dx = sinn−1(x)

∫
g dx−

∫
df

dx

∫
g dx

= sinn−1(x)(− cos x) + (n− 1)

∫
sinn−2 x cos2 x dx

We now need to evaluate

∫
sinn−2 x cos2 xdx. Putting cos2 x = 1− sin2 x this integral becomes:∫

sinn−2(x) dx−
∫

sinn(x) dx

But this is expressible as In−2 − In so finally, using this and the result from the last Task we have

In =

∫
sinn−1(x) sin x dx = sinn−1(x)(− cos x) + (n− 1)(In−2 − In)

from which we get Key Point 9:
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Key Point 9

Reduction Formula

Given In =

∫
sinn xdx

In = − 1

n
sinn−1(x) cos x +

n− 1

n
In−2

This is our reduction formula for In. It enables us, for example, to evaluate I6 in terms of I4, then
I4 in terms of I2 and I2 in terms of I0 where

I0 =

∫
sin0 x dx =

∫
1 dx = x.

Task

Use the reduction formula in Key Point 9 with n = 2 to find I2.

Your solution

Answer

I2 = −1

2
[sin x cos x] +

1

2
I0

= −1

2
[
1

2
sin 2x] +

x

2
+ c

i.e.

∫
sin2 x dx = −1

4
sin 2x +

x

2
+ c

as obtained earlier by a different technique.
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Task

Use the reduction formula in Key Point 9 to obtain I6 =

∫
sin6 x dx.

Firstly obtain I6 in terms of I4, then I4 in terms of I2:

Your solution

Answer

Using Key Point 9 with n = 6 gives I6 = −1

6
sin5 x cos x +

5

6
I4.

Then, using Key Point 9 again with n = 4, gives I4 = −1

4
sin3 x cos x +

3

4
I2

Now substitute for I2 from the previous Task to obtain I4 and hence I6.

Your solution

Answer

I4 = −1

4
sin3 x cos x− 3

16
sin 2x +

3

8
x+ constant

∴ I6 = −1

6
sin5 x cos x− 5

24
sin3 x cos x− 5

32
sin 2x +

5

16
x + constant

Definite integrals can also be readily evaluated using the reduction formula in Key Point 9. For
example,

In =

∫ π/2

0

sinn x dx so In−2 =

∫ π/2

0

sinn−2 x dx

We obtain, immediately

In =
1

n

[
− sinn−1(x) cos x

]π/2

0

+
n− 1

n
In−2

or, since cos
π

2
= sin 0 = 0, In =

(n− 1)

n
In−2

This simple easy-to-use formula is well known and is called Wallis’ formula.
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Key Point 10

Reduction Formula - Wallis’ Formula

Given In =

∫ π/2

0

sinn x dx or In =

∫ π/2

0

cosn x dx

In =
(n− 1)

n
In−2

Task

If In =

∫ π/2

0

sinn x dx calculate I1 and then use Wallis’ formula, without further

integration, to obtain I3 and I5.

Your solution

Answer

I1 =

∫ π/2

0

sin x dx =

[
− cos x

]π/2

0

= 1

Then using Wallis’ formula with n = 3 and n = 5 respectively

I3 =

∫ π/2

0

sin3 x dx =
2

3
I1 =

2

3
× 1 =

2

3

I5 =

∫ π/2

0

sin5 x dx =
4

5
I3 =

4

5
× 2

3
=

8

15
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Task

The total power P of an antenna is given by

P =

∫ π

0

ηL2I2π

4λ2
sin3 θ dθ

where η, λ, I are constants as is the length L of antenna. Using the reduction

formula for

∫
sinn x dx in Key Point 9, obtain P .

Your solution

Answer
Ignoring the constants for the moment, consider

I3 =

∫ π

0

sin3 θ dθ which we will reduce to I1 and evaluate.

I1 =

∫ π

0

sin θ dθ =

[
− cos θ

]π

0

= 2

so by the reduction formula with n = 3

I3 =
1

3

[
− sin2 x cos x

]π

0

+
2

3
I1 = 0 +

2

3
× 2 =

4

3

We now consider the actual integral with all the constants.

Hence P =
ηL2I2π

4λ2

∫ π

0

sin3 θ dθ =
ηL2I2π

4λ2
× 4

3
, so P = η

L2I2π

3λ2
.

A similar reduction formula to that in Key Point 9 can be obtained for

∫
cosn x dx (see Exercise 5

at the end of this Workbook). In particular if

Jn =

∫ π/2

0

cosn x dx then Jn =
(n− 1)

n
Jn−2

i.e. Wallis’ formula is the same for cosn x as for sinn x.
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4. Harder trigonometric integrals

The following seemingly innocent integrals are examples, important in engineering, of trigonometric
integrals that cannot be evaluated as indefinite integrals:

(a)

∫
sin(x2) dx and

∫
cos(x2) dx These are called Fresnel integrals.

(b)

∫
sin x

x
dx This is called the Sine integral.

Definite integrals of this type, which are what normally arise in applications, have to be evaluated
by approximate numerical methods.

Fresnel integrals with limits arise in wave and antenna theory and the Sine integral with limits in
filter theory.

It is useful sometimes to be able to visualize the definite integral. For example consider

F (t) =

∫ t

0

sin x

x
dx t > 0

Clearly, F (0) =

∫ 0

0

sin x

x
dx = 0. Recall the graph of

sin x

x
against x, x > 0:

π 2π

sin x

x

xt

Figure 14

For any positive value of t, F (t) is the shaded area shown (the area interpretation of a definite integral
was covered earlier in this Workbook). As t increases from 0 to π, it follows that F (t) increases from
0 to a maximum value

F (π) =

∫ π

0

sin x

x
dx

whose value could be determined numerically (it is actually about 1.85). As t further increases from

π to 2π the value of F (t) will decrease to a local minimum at 2π because the
sin x

x
curve is below

the x-axis between π and 2π. Note that the area below the curve is considered to be negative in
this application.

Continuing to argue in this way we can obtain the shape of the F (t) graph in Figure 15: (can you
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see why the oscillations decrease in amplitude?)

π 2π t

F (t)

1.85

π

2

Figure 15

The result

∫ ∞

0

sin x

x
dx =

π

2
is clearly illustrated in the graph (you are not expected to know

how this result is obtained). Methods for solving such problems are dealt with in 31.
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Exercises

You will need to refer to a Table of Trigonometric Identities to answer these questions.

1. Find (a)

∫
cos2 xdx (b)

∫ π/2

0

cos2 tdt (c)

∫
(cos2 θ + sin2 θ)dθ

2. Use the identity sin(A + B) + sin(A−B) ≡ 2 sin A cos B to find

∫
sin 3x cos 2xdx

3. Find

∫
(1 + tan2 x)dx.

4. The mean square value of a function f(t) over the interval t = a to t = b is defined to be

1

b− a

∫ b

a

(f(t))2dt

Find the mean square value of f(t) = sin t over the interval t = 0 to t = 2π.

5. (a) Show that the reduction formula for Jn =

∫
cosn x dx is

Jn =
1

n
cosn−1(x) sin x +

(n− 1)

n
Jn−2

(b) Using the reduction formula in (a) show that∫
cos5 x dx =

1

5
cos4 x sin x +

4

15
cos2 x sin x +

8

15
sin x

(c) Show that if Jn =

∫ π/2

0

cosn x dx, then Jn =

(
n− 1

n

)
Jn−2 (Wallis’ formula).

(d) Using Wallis’ formula show that

∫ π/2

0

cos6 x dx =
5

32
π.

Answers

1. (a) 1
2
x + 1

4
sin 2x + c (b) π/4 (c) θ + c.

2. − 1
10

cos 5x− 1
2
cos x + c.

3. tan x + c.

4. 1
2
.
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