

Quadratic equations 1

Introduction

This leaflet will explain how many quadratic equations can be solved by **factorisation**.

Quadratic equations

A quadratic equation is an equation of the form $ax^2 + bx + c = 0$, where a, b and c are constants. For example $3x^2 + 2x - 9 = 0$ is a quadratic equation with a = 3, b = 2 and c = -9.

The constants b and c can have any value including 0. The constant a can have any value except 0. This is to ensure that the equation has an x^2 term. We often refer to a as the coefficient of x^2 , to b as the coefficient of x and to c as the constant term. Usually, a, b and c are known numbers, whilst x represents an unknown quantity which we will be trying to find.

The solutions of a quadratic equation

To **solve** a quadratic equation we must find values for x which when substituted into the equation make the left-hand and right-hand sides equal. These values are also called **roots**. For example the value x = 4 is a solution of the equation $x^2 - 3x - 4 = 0$ because substituting 4 for x we find

$$4^2 - 3(4) - 4 = 16 - 12 - 4$$

which simplifies to zero, the same as the right-hand side of the equation. There are several techniques which can be used to solve quadratic equations. One of these, *factorisation*, is discussed in this leaflet. You should be aware that not all quadratic equations can be solved by this method. An alternative method which uses a formula is described on leaflet 2.18.

Solving a quadratic equation by factorisation.

Sometimes, but not always, it is possible to solve a quadratic equation using factorisation. If you need to revise factorisation you should see leaflet 2.9 Factorising quadratics.

Example

Solve the equation $x^2 + 7x + 12 = 0$ by factorisation.

Solution

We first factorise $x^2 + 7x + 12$ as (x+3)(x+4). Then the equation becomes (x+3)(x+4) = 0.

It is important that you realise that if the product of two quantities is zero, then one or both of the quantities must be zero. It follows that either

$$x + 3 = 0$$
, that is $x = -3$ or $x + 4 = 0$, that is $x = -4$

The roots of $x^2 + 7x + 12 = 0$ are x = -3 and x = -4.

Example

Solve the quadratic equation $x^2 + 4x - 21 = 0$.

Solution

 $x^2 + 4x - 21$ can be factorised as (x+7)(x-3). Then

$$x^{2} + 4x - 21 = 0$$
$$(x+7)(x-3) = 0$$

Then either

$$x+7=0$$
, that is $x=-7$ or $x-3=0$, that is $x=3$

The root of $x^2 + 4x - 21 = 0$ are x = -7 and x = 3.

Example

Find the roots of the quadratic equation $x^2 - 10x + 25 = 0$.

Solution

$$x^{2} - 10 + 25 = (x - 5)(x - 5) = (x - 5)^{2}$$

Then

$$x^{2} - 10x + 25 = 0$$
$$(x - 5)^{2} = 0$$
$$x = 5$$

There is one root, x = 5. Such a root is called a **repeated root**.

Example

Solve the quadratic equation $2x^2 + 3x - 2 = 0$.

Solution

The equation is factorised to give (2x-1)(x+2)=0. So, from 2x-1=0 we find 2x=1, that is $x=\frac{1}{2}$. From x+2=0 we find x=-2. The two solutions are therefore $x=\frac{1}{2}$ and x=-2.

Exercises

1. Solve the following quadratic equations by factorization.

a)
$$x^2 + 7x + 6 = 0$$
, b) $x^2 - 8x + 15 = 0$, c) $x^2 - 9x + 14 = 0$,

d)
$$2x^2 - 5x - 3 = 0$$
, e) $6x^2 - 11x - 10 = 0$, f) $6x^2 + 13x + 6 = 0$.

Answers

a)
$$-1, -6$$
, b) $3, 5$, c) $2, 7$, d) $3, -\frac{1}{2}$, e) $\frac{5}{2}, -\frac{2}{3}$, f) $x = -\frac{3}{2}, x = -\frac{2}{3}$.