

Is there an Algebra Problem after all?

Reinhard Oldenburg (Augsburg) May 25th, 2017

 Context of the question: Project on algebra-specific diagnosis and intervention

Is there really an algebra-specific problem of learning?

- Mainstream YES
 - Didactical cut
- But maybe NO
- Not just this question but a little bit on the projects background ideas

Empty set of students

- To investigate algebra problems in more detail I asked collaborating teachers to...
 - Identify students that perform well on arithmetics
 - ... but struggle with symbolic algebra
- Only two students were identified by teachers
- Both showed severe difficulties in arithmetics, but NO algebra specific problems
- Hence hypothesis: Algebra poses no special cognitive demands
- Rethinking it from scratch a personal challenge, clarify things for myself

- Numbers and fractions present almost the same generality as variables, e.g. ½ is ½ of *some* unit
- 3 may have elementary meaning, 749839 not more than x
- Coordination of signs (operators, parentheses) is not much different from symbolic algebra
 - -Rules of syntax and semantics
 - -Ability to carry out algorithms

Pro Arguments

- The role of **substitution** as a central algebraic operation
 - Theoretical: Provides Turing complete computation (lambda calculus)
 - -Practical: Provides powerful programming (production systems)
 - -Psychological: Subst. of common sub-expressions frees working memory
 - Empirical: In algebra tests: Good in substitution implies well in algebra in general (Oldenburg 2009)
- Substitution is central in arithmetic as well
 - -E.g. mental computation: Remainder of 732:4? Substitute 732=700+32
 - -Rule "Trade 1 blue chip for 4 red ones". 5 blue \rightarrow 20=5*4 red. V.v.: division
- Nota bene:
 - -Substitution alone is not everything: Need strategies as well
 - -It is difficult
- First Message: Take substitution more seriously in the curriculum!

- Study by Christianson et al: Practice makes nearly perfect
 - Considers professor-student type tasks (reversal error)
- Method: Unguided practice!
 - Tasks in pairs: Word order helpful vs. misleading
 - There are six times as many marigolds as there are pansies.
 - The number of marigolds is six times the number of pansies.
 - Students could refine first answer after doing the 2nd
- Algebra problems = lack of practice?

- Solving arithmetical and algebraic problems activates different areas of the brain (e.g. Henz&Oldenburg&Schöllhorn 2015)
- Numerical and symbolic items correlate only weakly in tests.
 - -Elaborate on this point

• SMART Tests by Kaye Stacey. Arithmetic

Choose whether each statement is true or false.

SMART Tests by Kaye Stacey. AlgebraT

Choose whether each statement is true or false.

Arguments: Tests

SMART Tests by Kaye Stacey. AlgebraSem

Lucy bought 6 doughnuts for 12 dollars. She wanted to work out how much each doughnut cost. She wrote the equation 6d = 12. In Lucy's equation, *d* stands for: David is 10 cm taller than Con. Con is *h* cm tall. We write David's height in algebra as:

				, ⊂noose one answer.	
Choose one answer.	0	а.	the number of doughnuts		,
	0	b.	doughnuts		1
	0		-		0
	· · ·	υ.	the cost of one doughnut		~
	0	d.	one doughnut		0
	0	e.	dollars		0
		ν.	aonaro		

The cost of hiring a bicycle is made up of a fixed fee of \$25 and a usage charge of \$8 per hour.

Which way would your teacher prefer to see the rule for this cost written?

-	~			
Choose one answer.	0	a.	25 C + 8 t	where the C is the fixed fee and t is the time used in hours
	0	b.	8 t +25 w	where t is the number of hours used
	0	С.	C = 25 + 8 t	where $m{C}$ is the total hiring cost in dollars and $m{t}$ is the number of hours used
	C		C = 25 + h = 8 er of hours used	

Arguments: Tests

- SMART Tests by Kaye Stacey.
 - -Correlation Arithmetics-AlgebraT: 0.41
 - Consider this as high, as cor(arith/2, arith/2) is approx 0.47
 - -Correlation Arithmetics-AlgebraSem: 0.19
- Statistical implicative analysis: Measure implications
 - -"weak in arithmetics" => "weak in algebra": φ =0.96
 - -"weak in algebra" => "strong in arithmetics": φ =0.04

-"weak in algebra" => "weak in arithmetics": φ =0.81

• Explaining hypothesis 1: As most of school algebra is transformational algebra, students who face problems here are likely to fail in arithmetics as well.

- But is this really all? Isn't there a didactical cut?
- A closer look using the lense of language levels
- Now: Excursion on language levels

 Not just to answer the central question, but as background to project

Algebra and Language

- Three aspects
 - Syntax: Formal rules. How can symbols be combined?
 - Semantics: Reference to objects. What is it?
 - Pragmatics: Rules how to use language in context. What do I use and to which end?
- Operating on all levels is important

- Example: Comparing two mobile phone providers
 - 1. Pragmatics: What tool is adequate? Table, expression, equation, inequality, graph? Inequality!
 - 2. Semantics: Fix references: *n* number of minutes. Comparison: 5+0,09*n*<10+0,03*n*
 - 3. Syntax: Manipulation: n<88,3.
 - 4. Semantics: Interpretation: First offer is better when at most 88 Minutes are used.
 - 5. Pragmatics: Act according to result.

- Error analysis: "There are 84 balls. 10 more are red than blue"
- Error on pragmatical level: f(r,b)=r+b+10
 Unsuitable math used
- Error on semantical level: r+(r+10)=84
 - Reference wrong
- Error on syntactical level: b+r=84, r=10+b hence
 r=b-84 and b-84=10+b.
 - Structure wrongly operated on

Each level corresponds to specific mental conceptions

Level	Conception	Ex.: Variable
Syntactical	Structural concept: How does it look like?	a) A letter b) A structured symbol, x _i
Semantical	Ontological concept: What is it?	a) A reference b) A container
Pragmatical	Role: What is it used for?	 a) Shortcut for known numbers b) Unknowns c) undetermined

Hypothesis: Specific emotions for each level!

Level	Emotion	Examples of positive and negative emotions (p/n)
Syntax	Aesthetics: well-formed	n: 3(4+)) p: x ³ +x ² +x+1
Semantics	Coherence (Logic)	p: Successful check n: Paradoxes
Pragmatics	Utility	p: full decision tree n: Table with missing cases

Hypothesis: particular difference between arithmetics and algebra mainly on the pragmatical level

Level	Arithmetics	Algebra
Syntax	Expressions, equations	Just one new thing: variables
Semantics	Operations	As arithmetics + variable values
Pragmatics	Meaning operations	MANY differences! New strategies for problem solving

- What do we learn from this?
- Arithmetics and algebra are close together with regards to syntax and semantics
 - No particular difficulties here: But make connection transparent
- Substantial differences on the pragmatics level
- Integrate syntax and semantics by a computer tool with some pragmatic ideas

How to link syntax and semantics?

FeliX1D

A pragmatical issue

- A remarkable type of answer to a reversal error test item:
 - -The Rhine is 200km longer than the Elbe: r+200=e-200
- No explanation for this from ST or other models
- Hypothesis: Attributes mistaken for operations and v.v.
- Attributes (e.g. vector arrow) and operations (e.g. complex conjugation) look similar \vec{a} , \overline{a}
- Other manifestations of attribute misconception: Agree with the following statements...
 - -x is negative 2y is greater than y
- Correlation #reversal errors and #attribute misconceptions : r=0.62 (n=29)
- So reversal error may be caused on the pragmatical level
- Another nice attribute error: Case *a*<|1| or *a*>|1|

- Summarizing the hypothesis
 - -There are parts of algebra (syntactical, semantical) that are close to arithmetics, so no special algebra problem there
 - -But: Pragmatics is different
 - -Anyway: The integration of syntaix-semantics-pragmatics needs care
- This explains to some extent why no students weak on algebra but strong of arithmetics could be identified: algebra in school means mainly transformational algebra, where the pragmatical differences don't matter that much
- Discussion