Is there an
 Algebra Problem after all?
 Reinhard Oldenburg (Augsburg)
 May $25^{\text {th }}, 2017$

Overview

- Context of the question: Project on algebra-specific diagnosis and intervention Is there really an algebra-specific problem of learning?
- Mainstream YES
- Didactical cut
- But maybe NO
- Not just this question but a little bit on the projects background ideas

Empty set of students

- To investigate algebra problems in more detail I asked collaborating teachers to...
- Identify students that perform well on arithmetics
- ... but struggle with symbolic algebra
- Only two students were identified by teachers
- Both showed severe difficulties in arithmetics, but NO algebra specific problems
- Hence hypothesis: Algebra poses no special cognitive demands
- Rethinking it from scratch - a personal challenge, clarify things for myself

Pro Arguments

- Numbers and fractions present almost the same generality as variables, e.g. $1 / 2$ is $1 / 2$ of some unit
- 3 may have elementary meaning, 749839 not more than x
- Coordination of signs (operators, parentheses) is not much different from symbolic algebra -Rules of syntax and semantics
-Ability to carry out algorithms

Pro Arguments

- The role of substitution as a central algebraic operation
-Theoretical: Provides Turing complete computation (lambda calculus)
-Practical: Provides powerful programming (production systems)
-Psychological: Subst. of common sub-expressions frees working memory
-Empirical: In algebra tests: Good in substitution implies well in algebra in general (Oldenburg 2009)
- Substitution is central in arithmetic as well
-E.g. mental computation: Remainder of 732:4? Substitute 732=700+32
-Rule "Trade 1 blue chip for 4 red ones". 5 blue $\rightarrow 20=5^{*} 4$ red. V.v.: division
- Nota bene:
-Substitution alone is not everything: Need strategies as well
-It is difficult
- First Message: Take substitution more seriously in the curriculum!

Pro Arguments

- Study by Christianson et al: Practice makes nearly perfect
- Considers professor-student type tasks (reversal error)
- Method: Unguided practice!
- Tasks in pairs: Word order helpful vs. misleading
- There are six times as many marigolds as there are pansies.
- The number of marigolds is six times the number of pansies.
- Students could refine first answer after doing the $2^{\text {nd }}$
- Algebra problems = lack of practice?

Contra Arguments

- Solving arithmetical and algebraic problems activates different areas of the brain (e.g. Henz\&Oldenburg\&Schöllhorn 2015)
- Numerical and symbolic items correlate only weakly in tests.
-Elaborate on this point

Arguments: Tests

- SMART Tests by Kaye Stacey. Arithmetic

Choose whether each statement is true or false.

Arguments: Tests

- SMART Tests by Kaye Stacey. AlgebraT

Choose whether each statement is true or false.

$$
\begin{aligned}
& \frac{33 x}{11 x}=3 \quad \begin{array}{l}
\text { TRUE } \\
\text { FALSE } \\
\hline
\end{array} \\
& \frac{18 x}{6 x}=3 x \\
& 5 m=m^{5} \\
& \frac{s}{t}+\frac{p}{t}=\frac{s+p}{t} \\
& 3 \times(a \times 2 b)=3 a \times 6 b \\
& 8 d-3 g=3 g-8 d
\end{aligned}
$$

Arguments: Tests

- SMART Tests by Kaye Stacey. AlgebraSem

Lucy bought 6 doughnuts for 12 dollars.
She wanted to work out how much each doughnut cost.
She wrote the equation $6 d=12$.
In Lucy's equation, d stands for:
David is 10 cm taller than Con.
Con is $h \mathrm{~cm}$ tall.
We write David's height in algebra as:

Choose one answer.

Choose one answer.	0	a.	the number of doughnuts
	0	b.	doughnuts
	0	c	the cost of one doughnut
	0	d	one doughnut
	0	e	dollars

The cost of hiring a bicycle is made up of a fixed fee of $\$ 25$ and a usage charge of $\$ 8$ per hour.
Which way would your teacher prefer to see the rule for this cast written?

Choose one answer.	$C$$C$$C$	a. b.	$\begin{aligned} & 25 C+8 t \\ & 8 \boldsymbol{t}+25 \end{aligned}$	Where the \boldsymbol{C} is the fixed fee and \boldsymbol{t} is the time used in hours		
				where t is the number of hours used		
		C.	$\boldsymbol{C}=25+8 \boldsymbol{t}$		Where \boldsymbol{C} is the total hiring cost in dollars and \boldsymbol{t} is the number of hours used	
	C	d.	$C=25+h=8 t$ of hours used		where C is the total hiring cost in dollars, h is the hiring charge and t is the	

Arguments: Tests

- SMART Tests by Kaye Stacey.
- Correlation Arithmetics-AlgebraT: 0.41
- Consider this as high, as cor(arith/2, arith/2) is approx 0.47
-Correlation Arithmetics-AlgebraSem: 0.19
- Statistical implicative analysis: Measure implications
- "weak in arithmetics" => "weak in algebra": $\varphi=0.96$
- "weak in algebra" => "strong in arithmetics": $\varphi=0.04$
-"weak in algebra" => "weak in arithmetics": $\varphi=0.81$
- Explaining hypothesis 1 : As most of school algebra is transformational algebra, students who face problems here are likely to fail in arithmetics as well.

Evaluation of Hypothesis

- But is this really all? Isn't there a didactical cut?
- A closer look using the lense of language levels
- Now: Excursion on language levels - Not just to answer the central question, but as background to project

Algebra and Language

- Three aspects
- Syntax: Formal rules. How can symbols be combined?
- Semantics: Reference to objects. What is it?
- Pragmatics: Rules how to use language in context. What do I use and to which end?
- Operating on all levels is important

Algebra and Language

- Example: Comparing two mobile phone providers
- 1. Pragmatics: What tool is adequate? Table, expression, equation, inequality, graph? Inequality!
- 2. Semantics: Fix references: n number of minutes. Comparison: $5+0,09 n<10+0,03 n$
-3. Syntax: Manipulation: $n<88,3$.
-4. Semantics: Interpretation: First offer is better when at most 88 Minutes are used.
-5 . Pragmatics: Act according to result.

Algebra and Language

- Error analysis: „There are 84 balls. 10 more are red than blue"
- Error on pragmatical level: $f(r, b)=r+b+10$
- Unsuitable math used
- Error on semantical level: $r+(r+10)=84$
- Reference wrong
- Error on syntactical level: $b+r=84, r=10+b$ hence $r=b-84$ and $b-84=10+b$.
- Structure wrongly operated on

Algebra and Language

Each level corresponds to specific mental conceptions

Level
Syntactical

Conception
Structural concept: How does it look like?

Ontological concept: What is it?
a) A reference
b) A container

Pragmatical
Role: What is it used for?
a) Shortcut for known numbers
b) Unknowns
c) undetermined

Algebra and Language

Hypothesis: Specific emotions for each level!

Level	Emotion	Examples of positive and negative emotions (p/n)
Syntax	Aesthetics: well-formed	$\mathrm{n}: 3(4+))$ $\mathrm{p}: x^{3}+\mathrm{x}^{2}+x+1$
Semantics	Coherence (Logic)	$\mathrm{p}:$ Successful check $\mathrm{n}:$ Paradoxes
Pragmatics	Utility	$\mathrm{p}:$ full decision tree $\mathrm{n}:$ Table with missing cases

Algebra and Language

 and algebra mainly on the pragmatical level| Level | Arithmetics |
| :--- | :--- |
| Syntax | Expressions, equatio |
| Semantics | Operations |
| Pragmatics | |

Algebra

Just one new thing: variables

As arithmetics + variable values

MANY differences! New strategies for problem solving

Algebra and Language

- What do we learn from this?
- Arithmetics and algebra are close together with regards to syntax and semantics
- No particular difficulties here: But make connection transparent
- Substantial differences on the pragmatics level
- Integrate syntax and semantics by a computer tool with some pragmatic ideas

Semantics

How to link syntax and semantics?

FeliX1D

Intro zum Kennenlernen

Neuer Punkt

Relax Interpretation

Eq. Semantics
\square Ganzzahlige wegung Darstellung: © einzeilig mehrzeilig

A pragmatical issue

- A remarkable type of answer to a reversal error test item:
- The Rhine is 200 km longer than the Elbe: $\mathbf{r + 2 0 0 = e - 2 0 0}$
- No explanation for this from ST or other models
- Hypothesis: Attributes mistaken for operations and v.v.
- Attributes (e.g. vector arrow) and operations (e.g. complex conjugation) look similar \vec{a}, \bar{a}
- Other manifestations of attribute misconception: Agree with the following statements...
$--x$ is negative
$2 y$ is greater than y
- Correlation \#reversal errors and \#attribute misconceptions : $r=0.62$ ($n=29$)
- So reversal error may be caused on the pragmatical level
- Another nice attribute error: Case $a<|1|$ or $a>|1|$
- Summarizing the hypothesis
-There are parts of algebra (syntactical, semantical) that are close to arithmetics, so no special algebra problem there
But: Pragmatics is different
-Anyway: The integration of syntaix-semantics-pragmatics needs care
- This explains to some extent why no students weak on algebra but strong of arithmetics could be identified: algebra in school means mainly transformational algebra, where the pragmatical differences don't matter that much
- Discussion

