
Midlands Centre for
Data-Driven Metrology (MCDDM)

Summer Internship 2023
Poster Book

•

•

•

•

•

•

•

•

•

•

•

Fast Steering
Prabrup Chana, Tayyab Farrakh, Sam Muddimer, Peter Kinnell, Jeremy Coupland, Wen Claire Guo

Once completed,

measurements are taken

to a target allowing

position to be calculated

by trilateration

Results can be compared

against simulation (below)

Laser precision

Refractive index changes in

laser path

Angle of incidence of the

incoming beam

Rotated target plane

Off-centered incoming beam

Distant center of rotation

Quantify Errors &

Uncertainties

Calculate suitable

paths for directing

laser to any given

target

A python script uses

permutations to

identify every

possible path when

including all mirrors

‘n’

Optimise for shortest

path to reduce error

in measurement

Path Finding

Author
LinkedIn:
Prabrup
Chana

Author
LinkedIn:
Sam
Muddimer

Author
LinkedIn:
Tayyab
Farrakh

www.mcddm.ac.uk
www.intelligent-automation.org.uk

In modern manufacturing, part quality is heavily dependant on the accuracy and precision of
measurements taken during the manufacturing process. Existing laser trackers enable non-
invasive measurement of large parts to an accuracy of sub-10 microns; however, they are
expensive, labour intensive and limited to single-point measurements.
This research presents a new measurement system that utilises a network of steerable
mirrors in conjunction with a high accuracy, fixed laser to make rapid measurements in
industrial settings. The new system enables an increase in measurement speed,
repeatability, path manipulation around obstructions, and measurement validation.
Importantly, by removing hardware from the busy factory floor, the system reduces the risks
of operational interference and environmental noise, thereby improving data reliability.

Custom python script

Adjust mirror positions with arrow keys

Adjustment ‘step-size’ control

Saving and recalling of mirror positions for

fast calibration and repeat measurements

Results

Mirror Control

Optical arrangement ensures robust

detection of return laser beam

Laser Distance Measurement Device
Accuracy ±1000 ppm

Target measurement

Network calibrated by

measuring distances seen

in red and purple.

Experiment

Mirror Position Configuration

Promising results seen in 3D system

Use higher accuracy laser system to

improve results

Incorporate mirrors in network to

increase number of measurement paths

1.

2.

3.

Self determine suitable

networks for any given

space

Optimize measurement

capability

Uses network checks to

find feasible network

System Configuration

Finder

Optimise PID control to

enable multiple

measurements to be

taken rapidly.

Find targets with

stereovision system to

enale fast measurement

and tracking.

Automated Targeting

Ongoing Work

General Mirror Set up Object Position by Trilateration

Shortest Path Visualisation

Network Simulation
Network Validation Checks

 Method

The system requires a cartesian layout of the mirrors in 3D space

Optimisation eliminates ‘error stacking’ created when using

analytical soltutions, therby improving positions of mirrors

Network measurement -

Retroreflection required
Network measurement -

Retroreflection not required

Rosen Brock Function Derivation

Trilateration to configure the 4

mirror network

 Optimisation solves 2 non-linear

systems of equations defining

Tetrahedron 1 (Green) and 2

(Black) to find target coordinates

Digital Twin

Distance between 2 Target Points

Mirror Network

Camera Control GUI with Camera
Calibration and Body Tracking

The Intelligent Automation Centre has 8 ZED 2 cameras from StereoLabs placed around the lab and orientated to look at the centre.
Staff using these cameras are forced to go through the tedious task of individually accessing each one to find one that suits their
purpose, then running their chosen application. Creating a ‘Camera Control GUI’ allows staff to easily see the camera feeds as well as
running applications such Body Tracking and Camera Calibration.

Akilan Nambi
LinkedIn:

p.kinnell@lboro.ac.uk

www.mcddm.ac.uk
www.intelligent-automation.org.uk

Setup
ZED 2 cameras are placed around the lab cell, each of
which are connected to a ZED Box. By connecting all the
ZED boxes via ethernet to a router, we have a local
network from which we have the ability to access every
camera via their IP addresses. The ZED Boxes also allow us
to run applications such as Body Tracking on the cameras
due to the GPU within each ZED Box.

 OT

Akilan Nambi Masoud Sotoodeh-Bahraini Peter Kinnell Claire Guo Cong Sun

Camera Calibration
Camera Calibration is a large part of this project and
involves calibrating both the intrinsic and extrinsic camera
parameters, as well as the positions of the cameras
relative to each other.

.

Body Tracking
The user can select a specific camera and bring up two live
feeds. One showing the normal view and the other with
body tracking running. Body tracking overlays the normal
view with a skeleton image representing the joints and
basic face structure of a person. The detail of the skeleton
can be altered from 18 points to 38 points which affects
the speed and processing power of the video.

ZED Box ZED 2 Stereo Camera

Stereo Calibration
Using OpenCV and a Checkerboard,
I can calibrate each ZED 2 camera to
calculate their intrinsic and extrinsic
parameters.

Camera Positioning Calibration
Using different calibration tools such as ArUco Markers,
Checkerboards and the ZED 360 skeleton calibration, I can
calculate the camera positions relative to each other within
the environment.

Creating a simulated environment,
I can run optimisation algorithms
to minimise the errors and create
accurate results for these
positions. These results can be
compared to the ZED 360
optimisation which uses body tracking on one person
walking around the room to calibrate the cameras positions.

Conclusion
A GUI has been created that allows the lab’s staff to view
the cameras’ live feeds and run several applications
through the GUI. On start up, the GUI runs a bash file
which automatically turns on the streaming script on all
the cameras. Optimisation of the camera positioning is a
key focus and staff are able to move and have both a static
ArUco marker as well as make a dataset with a moving
marker to calculate and record camera positioning. The
GUI has been redesigned to be user friendly and aesthetic,
while also functioning as a powerful tool for users

Body measurement through
photogrammetry

Authors: Robin Holmes, Wen Guo, Cong Sun, Peter Kinnell

Robin Holmes
LinkedIn:

www.mcddm.ac.uk
www.intelligent-automation.org.uk

The process of using a phone’s camera to generate measurements for clothing

How to measure someone with a smartphone:
There are two major ways to get a 3d model from a
smartphone, LIDAR scanning and photogrammetry. LIDAR
scanning requires a LIDAR sensor (sometimes also called a
time-of-flight sensor) which is limited to certain recent I-
Phone and I-Pad models as well as three now discontinued
Samsung phones. Photogrammetry on the other hand
requires only the camera, something all modern phones have.
By taking this model and essentially slicing it into strips,
measurements can be acquired from the whole body.

A quick introduction to photogrammetry:
Photography is the process of projecting a 3d object onto a 2d
plane, photogrammetry is an attempt at reversing this
process. It’s often quite a computationally and data intensive
process, requiring a fairly large dataset, including photos from
all angles, to create a successful model. Photogrammetry is
also sometimes called “Structure From Motion (SFM)” as by
using frames from a video you get a near perfect dataset.

Start

Take video
fully encircling

subject

Load video
onto compute

node

Extract frames
from video

Create masks
with

SegmentDINO

Run meshroom
on masked

photos

Extract
Measurements

from output

Colmap Meshroom Visual SFM Regard 3D Kiri Engine Polycam

The result here is
extremely noisy and
lacks detail, the whole
scene having just 102k
points. Looking at the
arms in particular,
some areas are entirely
impossible to measure.

This model is
objectively the best for
the application, note
the clearly defined
limbs without holes and
the relatively high 164k
points. Some areas are
still somewhat sparse
(E.G. the shirt)

Visual SFM failed to
produce a viable
model, instead giving
less than 2 thousand
data points. Some
recognizable features
such as the lanyard are
still visible, but nothing
that can be used.

Insanely noisy, results
that almost make
Colmap look good.
527k points means it’s
not lacking in detail,
but it also took the
longest to run by far.

While the model may look
like one of the best at first
glance, this is actually one
of the least useful, note
the fusing between the
arms and legs making
measuring impossible.
Also, there’s a strange
object ejecting itself from
the top of the model that
isn't on the real object.

This model is not
actually a point cloud,
this is a textured model
making it much harder
to pull usable data from.
Also note the fusing
between the legs and
the fringing on the arms
- the model is basically
useless.

Final steps:
Finding the scaling factor of the model
is currently a challenging and very
involved process and getting this wrong
can cause results to be entirely useless.

Using a checkerboard to automatically
scale would probably be the fastest and
easiest solution, but more testing is
needed.

Measurements from model:
By slicing the model on the XY plane we can generate a
series of rough ovals of data points, and these data
points can then have an actual oval fitted to them. The
code that generates this best fit oval gives the semi
major and semi minor radii which is everything we
need to find the perimeter.

By inputting these results into the slicer, we have seen
results within 5% of the expected value (after scaling by
a predetermined known factor).

Automatic Assembly System based on an
Object Detection and Localization Algorithm

Ahmad Abdin, Cong Sun, Claire Guo, Masoud Sotoodeh-Bahraini, Peter Kinnell

Introduction
In automatic assembly systems, object detection is a necessity for the process to be completed, hence the reason behind the use of point cloud
stitching and PartFinder.
Why point cloud stitching? Why PartFinder?
- Adaptable - Can interface using python - Flexibility. - Can interface using python
- Accurate - Easily evaluated - Fast process. - Able to detect a variety of objects

Ahmad Abdin
LinkedIn:

www.mcddm.ac.uk

www.intelligent-automation.org.uk

Point Cloud Stitching
Point cloud stitching was accomplished via two methods:
Method #1: Manually by using a point cloud processing software
(CloudCompare)
Method #2: Through a python code which consists of 4 sections (input,
pose graph, optimization, output).

Figure 2. Scans
after the ground
segmentation
process.

Figure 3. Rough
alignment of point
clouds through
CloudCompare
functions (manual).

Figure 4. Rough
alignment of point
clouds through python
scripted pose graph
estimation.

Figure 1. Workflow of point cloud stitching and multiway registration

Results:
The images below include the real-world LEGO brick structure, the final
point cloud images and the transformational matrices of the scans after the
Iterative-Closest-Point (ICP) is accomplished for both methods.

 Real Image Method #1 Method #2

PartFinder
The Ensenso PartFinder allows users to detect objects by uploading a CAD
file of the item to their NXView software. This module was used, placing
an Ensenso N30 camera on a tripod in order to angle it on top of an area
that included a number of 2×2 and 2×4 LEGO bricks placed randomly with
different rotations. By doing this we could investigate the software’s
efficiency in object detection.

Step #1: Model Generation

This section allows the user to modify how
the camera views the object itself. This is
done through working on many important
parameters such as:

Angular discretization:
simplification of the possible orientations or
angles at which an object can be detected.
Camera viewpoints:
controlling the sides at which the camera
would be able to identify.

The next stage of the process includes the
parameters of how the software will help the
camera detect the object, based on the
object’s characteristics.

Distance ratio:
changes the detection rate when searching
over a distance.
Coverage threshold:
selects the threshold where the points are
considered to be on the surface.
Hypothesis clustering:
groups educated guesses through object
characteristics.

Step #2: Finding the Model

Results:
The results provide the user with the object’s 6 degrees of freedom along
with the score (confidence of the software that the object represents the
CAD model), surface coverage, texture score, and coverage threshold.

Conclusion & Future work
After working with point cloud stitching and PartFinder, it is deduced that
point cloud stitching does have an advantage due to its accuracy. However,
whilst PartFinder provides faster results and is more user-friendly, factors
like the angle of the camera and object, and the colour and size of the
object, affect the results. To further improve the findings and increase the
understanding of the methods, the next stage is:

⚫ Integrate hand-eye calibration to the point cloud stitching API code
⚫ Increase the number and variety of objects tested with both methods
⚫ Incorporate both methods into robots with the aim of allowing it to

scan and detect objects without the need of a person to direct it

Object Detection Using an
Automated Blender Simulation

Authors: Uche Okwese, Peter Kinnell, Wen Claire Guo and Cong Sun

ABSTRACT

-Generating a 3D Model library data set in Blender using Python Scripting to replicate work environment to be used by a collection of Neural Networks

-Determining optimal rendering resolution, image sample size and simulated environment correlation to work environment needed for an effective
object recognition neural network

Uche Okwese
LinkedIn:

www.mcddm.ac.uk
www.intelligent-automation.org.uk

1) METHODOLOGY

- Cameras generated using a
Blender Python script
function

- Camera generation location
is randomized within a set
maximum and minimum
distance from LEGO Brick

Computer Specifications: Rendering Time (In Seconds):

Processor: AMD Ryzen
Threadripper 2950x 16-Core
Processor 3.50 GHz

RAM: 64 GB

GPU: NVIDIA GeForce GTX
1660 Ti

Per Image: [Resolution]:

0.8s (Without Background) & 1.5s (With
Background) [300 X 300]

5.8s (Without) & 9s (With) [640 X 640]

7.2s (Without) & 17s(With) [1080 X 1080]

Annotation Directory:

- Each render is split into 2 directories (Image & Annotations),
annotations contain image data for the computer to interpret
what a human visualizes.

- Directories are defined in the Python Script and image data can
be returned by calling the variables and functions in which they
are stored.

AI Training:
- A bounding box is an imaginary
rectangle that illustrates the
approximate location and size of an
object

- This bounding box is automatically

created using an external Python
program (or embedded) to return the
output bounding box images from the
dataset

Camera Simulation:

2) RENDERING RESULTS – (WITH BACKGROUNDS)

- LEGO CAD Model imported into
simulated environment

- Rendered images illustrating the
different perspectives of the 2 X 2
LEGO brick

- 2 backgrounds (Wood & Metal
surface) added to simulation by
importing pictures from the lab to
3D Plan

3) RENDERING RESULTS – (NO BACKGROUND)

- Rendered images show
appearance of LEGO Brick without
a background or background
reflection

- No background samples obtained
for “Background Subtraction;” a
method for localizing an object
regardless of its surroundings

4) AI TRAINING RESULTS

- y-axis represents value of loss
function (Lower loss values
indicate that the model’s
predictions are closer to the
ground truth labels).

- x-axis is the number of trials.

YOLOv5 (COCO) MODEL: GITHUB MODEL: OUR MODEL:

General Opensource
object detection
library fails to detect
our LEGO

Pre-existing GitHub model
used to build our neural
network misinterprets
similar objects to LEGO

Using our own custom
model for the same
Neural Network, the AI
can now accurately
detect LEGO bricks5) CONCLUSION & FUTURE WORK:

Monotonous and time-consuming tasks, like bounding box creation, and image and annotation generation, become fully automated.

Training with our custom data makes the model work more efficiently as the simulated environment can be specialised to depict conditions and
interactions for the target environment.

In the future this model will be used to combine simulation and a small batch of real data to yield more accurate and precise results for object detection.

