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Fast Steering
Prabrup Chana, Tayyab Farrakh, Sam Muddimer, Peter Kinnell, Jeremy Coupland, Wen Claire Guo
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In modern manufacturing, part quality is heavily dependant on the accuracy and precision of
measurements taken during the manufacturing process. Existing laser trackers enable non-
invasive measurement of large parts to an accuracy of sub-10 microns; however, they are
expensive, labour intensive and limited to single-point measurements.
This research presents a new measurement system that utilises a network of steerable
mirrors in conjunction with a high accuracy, fixed laser to make rapid measurements in
industrial settings. The new system enables an increase in measurement speed,
repeatability, path manipulation around obstructions, and measurement validation.
Importantly, by removing  hardware from the busy factory floor, the system reduces the risks
of operational interference and environmental noise, thereby improving data reliability.
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 Method

The system requires a cartesian layout of the mirrors in 3D space

Optimisation eliminates ‘error stacking’ created when using

analytical soltutions, therby improving positions of mirrors 
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Retroreflection required
Network measurement -

Retroreflection not required

Rosen Brock Function Derivation

Trilateration to configure the 4

mirror network 

 Optimisation solves 2 non-linear

systems of equations defining  

Tetrahedron 1 (Green) and 2

(Black) to find target coordinates

Digital Twin

Distance between 2 Target Points

Mirror Network



Camera Control GUI with Camera 
Calibration and Body Tracking

The Intelligent Automation Centre has 8 ZED 2 cameras from StereoLabs placed around the lab and orientated to look at the centre. 
Staff using these cameras are forced to go through the tedious task of individually accessing each one to find one that suits their 
purpose, then running their chosen application. Creating a ‘Camera Control GUI’ allows staff to easily see the camera feeds as well as 
running applications such Body Tracking and Camera Calibration. 

Akilan Nambi 
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Setup
ZED 2 cameras are placed around the lab cell, each of 
which are connected to a ZED Box. By connecting all the 
ZED boxes via ethernet to a router, we have a local 
network from which we have the ability to access every 
camera via their IP addresses. The ZED Boxes also allow us 
to run applications such as Body Tracking on the cameras 
due to the GPU within each ZED Box.

 OT

Akilan Nambi Masoud Sotoodeh-Bahraini Peter Kinnell Claire Guo Cong Sun

Camera Calibration
Camera Calibration is a large part of this project and 
involves calibrating both the intrinsic and extrinsic camera 
parameters, as well as the positions of the cameras 
relative to each other.

.

Body Tracking
The user can select a specific camera and bring up two live 
feeds. One showing the normal view and the other with 
body tracking running. Body tracking overlays the normal 
view with a skeleton image representing the joints and 
basic face structure of a person. The detail of the skeleton 
can be altered from 18 points to 38 points which affects 
the speed and processing power of the video. 

ZED Box ZED 2 Stereo Camera

Stereo Calibration
Using OpenCV and a Checkerboard, 
I can calibrate each ZED 2 camera to 
calculate their intrinsic and extrinsic 
parameters.

Camera Positioning Calibration
Using different calibration tools such as ArUco Markers, 
Checkerboards and the ZED 360 skeleton calibration, I can 
calculate the camera positions relative to each other within 
the environment.

Creating a simulated environment, 
I can run optimisation algorithms 
to minimise the errors and create 
accurate results for these 
positions. These results can be 
compared to the ZED 360
optimisation which uses body tracking on one person 
walking around the room to calibrate the cameras positions.

Conclusion
A GUI has been created that allows the lab’s staff to view 
the cameras’ live feeds and run several applications 
through the GUI. On start up, the GUI runs a bash file 
which automatically turns on the streaming script on all 
the cameras. Optimisation of the camera positioning is a 
key focus and staff are able to move and have both a static 
ArUco marker as well as make a dataset with a moving 
marker to calculate and record camera positioning. The 
GUI has been redesigned to be user friendly and aesthetic, 
while also functioning as a powerful tool for users



Body measurement through 
photogrammetry

Authors: Robin Holmes, Wen Guo, Cong Sun, Peter Kinnell
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The process of using a phone’s camera to generate measurements for clothing 

How to measure someone with a smartphone:
There are two major ways to get a 3d model from a 
smartphone, LIDAR scanning and photogrammetry. LIDAR 
scanning requires a LIDAR sensor (sometimes also called a 
time-of-flight sensor) which is limited to certain recent I-
Phone and I-Pad models as well as three now discontinued 
Samsung phones. Photogrammetry on the other hand 
requires only the camera, something all modern phones have. 
By taking this model and essentially slicing it into strips, 
measurements can be acquired from the whole body.

A quick introduction to photogrammetry:
Photography is the process of projecting a 3d object onto a 2d 
plane, photogrammetry is an attempt at reversing this 
process. It’s often quite a computationally and data intensive 
process, requiring a fairly large dataset, including photos from 
all angles, to create a successful model. Photogrammetry is 
also sometimes called “Structure From Motion (SFM)” as by 
using frames from a video you get a near perfect dataset.

Start

Take video 
fully encircling 

subject

Load video 
onto compute 

node

Extract frames 
from video

Create masks 
with 

SegmentDINO

Run meshroom 
on masked 

photos

Extract 
Measurements 

from output

Colmap Meshroom Visual SFM Regard 3D Kiri Engine Polycam

The result here is 
extremely noisy and 
lacks detail, the whole 
scene having just 102k 
points. Looking at the 
arms in particular, 
some areas are entirely 
impossible to measure.

This model is 
objectively the  best for 
the application, note 
the clearly defined 
limbs without holes and 
the relatively high 164k 
points. Some areas are 
still somewhat sparse 
(E.G. the shirt)

Visual SFM failed to 
produce a viable 
model, instead giving 
less than 2 thousand 
data points. Some 
recognizable features 
such as the lanyard are 
still visible, but nothing 
that can be used.

Insanely noisy, results 
that almost make 
Colmap look good. 
527k points means it’s 
not lacking in detail, 
but it also took the 
longest to run by far.

While the model may look 
like one of the best at first 
glance, this is actually one 
of the least useful, note 
the fusing between the 
arms and legs making 
measuring impossible. 
Also, there’s a strange 
object ejecting itself from 
the top of the model that 
isn't on the real object.

This model is not 
actually a point cloud, 
this is a textured model 
making it much harder 
to pull usable data from. 
Also note the fusing 
between the legs and 
the fringing on the arms 
- the model is basically 
useless.

Final steps:
Finding the scaling factor of the model 
is currently a challenging and very 
involved process and getting this wrong 
can cause results to be entirely useless.

Using a checkerboard to automatically 
scale would probably be the fastest and 
easiest solution, but more testing is 
needed.

Measurements from model:
By slicing the model on the XY plane we can generate a 
series of rough ovals of data points, and these data 
points can then have an actual oval fitted to them. The 
code that generates this best fit oval gives the semi 
major and semi minor radii which is everything we 
need to find the perimeter.

By inputting these results into the slicer, we have seen 
results within 5% of the expected value (after scaling by 
a predetermined known factor).



Automatic Assembly System based on an 
Object Detection and Localization Algorithm

Ahmad Abdin, Cong Sun, Claire Guo, Masoud Sotoodeh-Bahraini, Peter Kinnell

Introduction
In automatic assembly systems, object detection is a necessity for the process to  be completed, hence the reason behind the use of point cloud 
stitching and PartFinder. 
Why point cloud stitching?           Why PartFinder?   
- Adaptable  - Can interface using python       - Flexibility.  - Can interface using python 
- Accurate  - Easily evaluated         - Fast process.  - Able to detect a variety of objects 

Ahmad Abdin 
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Point Cloud Stitching
Point cloud stitching was accomplished via two methods:
Method #1: Manually by using a point cloud processing software 
(CloudCompare)
Method #2: Through a python code which consists of 4 sections (input, 
pose graph, optimization, output). 

Figure 2. Scans 
after the ground 
segmentation 
process.

Figure 3. Rough 
alignment of point 
clouds through 
CloudCompare 
functions (manual). 

Figure 4. Rough 
alignment of point 
clouds through python 
scripted pose graph 
estimation. 

Figure 1. Workflow of point cloud stitching and multiway registration

Results:
The images below include the real-world LEGO brick structure, the final 
point cloud images and the transformational matrices of the scans after the 
Iterative-Closest-Point (ICP) is accomplished for both methods. 

 Real Image   Method #1   Method #2

PartFinder
The Ensenso PartFinder allows users to detect objects by uploading a CAD 
file of the item to their NXView software. This module was used, placing 
an Ensenso N30 camera on a tripod in order to angle it on top of an area 
that included a number of 2×2 and 2×4 LEGO bricks placed randomly with 
different rotations. By doing this we could investigate the software’s 
efficiency in object detection. 

Step #1: Model Generation

This section allows the user to modify how 
the camera views the object itself. This is 
done through working on many important 
parameters such as: 

Angular discretization:
simplification of the possible orientations or 
angles at which an object can be detected. 
Camera viewpoints: 
controlling the sides at which the camera 
would be able to identify. 

The next stage of the process includes the 
parameters of how the software will help the 
camera detect the object, based on the 
object’s characteristics. 

Distance ratio: 
changes the detection rate when searching 
over a distance. 
Coverage threshold: 
selects the threshold where the points are 
considered to be on the surface. 
Hypothesis clustering: 
groups educated guesses through object 
characteristics. 

Step #2: Finding the Model

Results:
The results provide the user with the object’s 6 degrees of freedom along 
with the score (confidence of the software that the object represents the 
CAD model), surface coverage, texture score, and coverage threshold. 

Conclusion & Future work
After working with point cloud stitching and PartFinder, it is deduced that 
point cloud stitching does have an advantage due to its accuracy. However, 
whilst PartFinder provides faster results and is more user-friendly, factors 
like the angle of the camera and object, and the colour and size of the 
object, affect the results. To further improve the findings and increase the 
understanding of the methods, the next stage is:  

⚫ Integrate hand-eye calibration to the point cloud stitching API code
⚫ Increase the number and variety of objects tested with both methods
⚫ Incorporate both methods into robots with the aim of allowing it to 

scan and detect objects without the need of a person to direct it



Object Detection Using an 
Automated Blender Simulation

Authors: Uche Okwese, Peter Kinnell, Wen Claire Guo and Cong Sun

ABSTRACT

-Generating a 3D Model library data set in Blender using Python Scripting to replicate work environment to be used by a collection of Neural Networks

-Determining optimal rendering resolution, image sample size and simulated environment correlation to work environment needed for an effective 
object recognition neural network

Uche Okwese
LinkedIn:

www.mcddm.ac.uk
www.intelligent-automation.org.uk 

1) METHODOLOGY

- Cameras generated using a 
Blender Python script 
function

- Camera generation location 
is randomized within a set 
maximum and minimum 
distance from LEGO Brick

Computer Specifications: Rendering Time (In Seconds):

Processor: AMD Ryzen                
Threadripper 2950x 16-Core 
Processor 3.50 GHz

RAM: 64 GB

GPU: NVIDIA GeForce GTX 
1660 Ti

Per Image:                              [Resolution]:

0.8s (Without Background) & 1.5s (With 
Background)                           [300 X 300]

5.8s (Without) & 9s (With)  [640 X 640]

7.2s (Without) & 17s(With) [1080 X 1080]

Annotation Directory:

- Each render is split into 2 directories (Image & Annotations), 
annotations contain image data for the computer to interpret 
what a human visualizes.

- Directories are defined in the Python Script and image data can 
be returned by calling the variables and functions in which they 
are stored.

AI Training:
- A bounding box is an imaginary 
rectangle that illustrates the 
approximate location and size of an 
object

- This bounding box is automatically

created using an external Python 
program (or embedded) to return the 
output bounding box images from the 
dataset

Camera Simulation:

2) RENDERING RESULTS – (WITH BACKGROUNDS)

- LEGO CAD Model imported into 
simulated environment

- Rendered images illustrating the 
different perspectives of the 2 X 2 
LEGO brick

- 2 backgrounds (Wood & Metal 
surface) added to simulation by 
importing pictures from the lab to 
3D Plan

3) RENDERING RESULTS – (NO BACKGROUND)

- Rendered images show 
appearance of LEGO Brick without 
a background or background 
reflection

- No background samples obtained 
for “Background Subtraction;” a 
method for localizing an object 
regardless of its surroundings

4) AI TRAINING RESULTS

- y-axis represents value of loss 
function (Lower loss values 
indicate that the model’s 
predictions are closer to the 
ground truth labels).

- x-axis is the number of trials.

YOLOv5 (COCO) MODEL: GITHUB MODEL: OUR MODEL:

General Opensource 
object detection 
library fails to detect 
our LEGO

Pre-existing GitHub model 
used to build our neural 
network misinterprets 
similar objects to LEGO

Using our own custom 
model for the same 
Neural Network, the AI 
can now accurately 
detect LEGO bricks5) CONCLUSION & FUTURE WORK:

Monotonous and time-consuming tasks, like bounding box creation, and image and annotation generation, become fully automated. 

Training with our custom data makes the model work more efficiently as the simulated environment can be specialised to depict conditions and 
interactions for the target environment. 

In the future this model will be used to combine simulation and a small batch of real data to yield more accurate and precise results for object detection.


