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Thomas Mgbor, George Hair, Luke Hutchinson, Cong Sun, Wen Guo, Masoud Sotoodeh-Bahraini, Connor Gill, Peter Kinnell

The high cost of both 3D scanning and col
who are small to medium sized where the

laborative robots (cobots) has been a barrier of entry for manufacturers, particularly to those
orecision of typical 3D scanning systems often exceeds their requirements. The increase In the

number of affordable cobots has allowed for a low-cost automated scanning system to become more accessible and financially viable. The
aim of the project was to integrate a low-cost, lightweight fringe projection system attached to a six-degrees-of-treedom robotic arm and

PC to create a portable scanning system.
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cameras with 12Zmm 1:2.8
2/3" lenses
~£1,500*

1
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ALY %
Yuafey Pico Mini Projector g
(FOFO Contrast Ratio: ik
2000:1, Brightness: 120

ANSI| Lumens)

~£150*

Non-specialist engineers
interns) were able to set-u
the solutions.

 Specialist engineers aided In Integ
solutions together.
Point Cloud Examples of Scanned Objects:

i

VDI/VDE 2634 Evaluation:

Experiment 1: Polyga V1 Scanner

undergraduate student
D, operate and program

Six . Fringe nopsebel Tl
DOF Projection TN
Cobot 3D Scanner iesigsde el Polyga Vision V1 3D Scanner
e TmayaliEh 1n inodee ~£10,000*
omatio~ robotics and
* Estimated
prices only,
ludin
Program to exciuding
time, labour,
Control Cobot machinery
costs, PC and
and Scanner software.

Simultaneously

Software used for both solutions included Polyga's

| ow-Cost Cobot FlexScan3D and CloudCompare:

| Integrated 3D . Fl_exSca_n3D generates the projectiqn, Interprets the
rating the Scanning fringe distortion and generat_es a point cloud. |
 CloudCompare enables point cloud analysis and
comparison.
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Experiment 2: Inovo Cobot and Polyga V1 Scanner

www.Intelligent-automation.org.uk

3DMC 2023 Bilbao

| 300.9 Sphere-to-sphere | 300.9 Sphere-to-sphere
Scanner takes 100 <. ot . 3o, distance (mm) Scanner takes 1 pistance Mean — .30g.8, ¢, distance (mm]
scans SRS ey scan. v ‘?{gg'?-:-:-i-:...,%,.ﬁ :
] . '.‘ny.o 3006 o4, , N{ 0. . o % ::.{% ..6 o4 :0 o. °
COnSGCUtIVGly . ../o. *300.5 o.‘};.' ° . - .’{‘: S 300‘!5 . :&‘}::o. ;:
:.,;;,. ° 300.4 “ . '\.{‘...: CObOt moves to :..l: 300.4 . “ﬁ;‘:'..
A 300.3 -\ o Je.s 3003 X2
o '.".. » 300.2 :‘" scanner tO new /. 7l. 300.2 :3“‘:.‘ .
.":g' ) 300/ ;“‘i:: position and - 3001 :-:.-?."
Cobot moves e \ . . scanner takes 1 ..; A\ ,7:' :
scanner to new X, e O SEE. ~% 7'[
position and : \X v ',"\‘\", VL
o 0%, .:'{0 ®e%e e ": . ’.:J.‘ ‘..' :
scanner takes RN . ot Cobot moves to 7 TUENG ., ‘;;(,’:‘. s Sphere fitted to scan
100 Gl et NPT KAt total positions so s L e points (RANSAC] and
Consecutlvely. T, e’.:’o.:“.‘.° . ’ . before returning . .‘ RS PN centre-to-centre
e T e e to initial. i distance calculated
Sphere-to-Sphere Distance  300.686 mm Sphere-to-Sphere Distance  300.652 mm
Mean | Process repeated ~ Mear | .
Process repeated Sphere Spacing Error 0.537 mm until 100 scans Sphere Spacing Error 0.503 mm Calibrated Ball Bar
until 7 positions | are taken at each | Sphere-to-Sphere
2 (Feerelb el Sphere—to—Sp.he.re Distance  0.084 mm position. Sphere—to—Sp_he_re Distance  0.076 mm Distance: 300 149mm
Standard Deviation Standard Deviation
Conclusions: Next Steps:
* Non-specialist engineers are able to set-up a system but may need  Develop a software that fully integrates the
specialist help to ingrate the system. technologies with ease for the user.
 The code written can be adapted for the size of the object being scanned  Experiment with more off-the-shelf low-cost
and detail required. hardware.
 The Inovo and Polyga V1 Scanner solution is relatively precise, with a  Expand parameter testing.
standard deviation < 85 ym but not as accurate, with a sphere spacing  Automatic scanner calibration wusing computer
error of ~500 um. vision.
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Fast Steering

Mirror Network ?‘fw‘?fe*ffg?t?‘f‘_‘g.'.’

Prabrup Chana, Tayyab Farrakh, Sam Muddimer, Peter Kinnell, Jeremy Coupland, Wen Claire Guo

n modern manufacturing, part quality i1s heavily dependant on the accuracy and precision of
measurements taken during the manutacturing process. Existing laser trackers enable non-
Invasive measurement of large parts to an accuracy of sub-10 microns; however, they are
expensive, labour intensive and limited to single-point measurements.

This research presents a new measurement system that utilises a network of steerable
mirrors In conjunction with a high accuracy, fixed laser to make rapid measurements in
Industrial settings. The new system enables an increase in measurement speed,
repeatability, path manipulation around obstructions, and measurement validation.
mportantly, by removing hardware from the busy factory tloor, the system reduces the risks
of operational interference and environmental noise, thereby improving data reliability.

Method

Mirror Control Laser Distance Measurement Device Experiment

« Custom python script

o Accuracy +1000 ppm « Network calibrated by

e Adjust mirror positions with arrow keys

« Optical arrangement ensures robust measuring distances seen

« Adjustment step-size control detection of return laser beam

in red and purple.

« Saving and recalling of mirror positions for
| | « Once completed,

fast calibration and repeat measurements
measurements are taken

Mirror Position Configuration '

e The system requires a cartesian layout of the mirrors in 3D space

to a target allowing

nosition to be calculated

« Optimisation eliminates ‘error stacking’ created when using by trilateration

analytical soltutions, therby improving positions of mirrors » Results can be compared

against simulation (below]

Ongoing Work Results Digital Twin

o Irilateration to configure the 4

Path Finding

e Calculate suitable

Distance between 2 Target Points mirror network

Digital Twin | Experimental o Optimisation solves 2 non-linear

2D - 2 Mirrors 53.4 mm 40mm
3D -4 Mirrors 69.74mm 70mm

paths for directing systems of equations defining

Tetrahedron 1 (Green) and 2

laser to any given

target lack] to find target coordinates

» A python script uses 1.Promising results seen in 3D system

permutations to 2.Use higher accuracy laser system to e .

@® Network measurement -

identity every

improve resuylts Retroreflection required v = .
; Network measurement - e il R | ] |
, - 01— e — e W i
possible path when 3.Incorporate mirrors in network to Retroreflection not required Je—— = //
including all mirrors increase number of measurement paths @ ‘arget measuremen e
‘N’ Rosen Brock Function Derivation

|AB|? = (x4 — x5)%+ (Va — ¥p)*+ (24 — 25)?

» Optimise for shortest Quantify Errors & Automated Targeting R G
path to reduce error

|CD|? = (x¢c — xp)*+ (Ve — ¥p)*+ (2c — 2p)?

Uncertainties  Optimise PID control to D17 = (rs — vt Gy G 2

In measurement o enable multiple
o Laser precision

|BC|? — |AB|*> — |AC|?
2|AB|
|BC|? — |AB|? — |AC|?

b=x,=

Constrain systemtox, vy, z
axis specified in picture

and rearrange to make c=z,= ||AC|? +

. . . measurements to be ko the subjec 2148
o Refractive index changes in 4l _lABP-laDE -~ BOF

taken rap|dly 2]AB|

(b — d)?>+|AD|?> — d? + ¢? — |CD|?

e =1z, =

laser path

yc = |AD|* —d

. Angle of incidence of the » Find targets with

stereovision system to

incoming beam System Configuration
enale fast measurement

« Rotated target plane Finder
and tracking.

o Off-centered incoming beam o Self determine suitable

e Distant center of rotation

networks for any given

being positive |
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General Mirror Set up find feasible network

Object Position by Trilateration Network Simulation
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Camera Control GUI with Camera

Calibration and Body Tracking

Akilan Nambi Masoud Sotoodeh-Bahraini Peter Kinnell

Claire Guo
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Cong Sun

The Intelligent Automation Centre has 8 ZED 2 cameras from Stereolabs placed around the lab and orientated to look at the centre.
Staff using these cameras are forced to go through the tedious task of individually accessing each one to find one that suits their
purpose, then running their chosen application. Creating a ‘Camera Control GUI" allows staff to easily see the camera feeds as well as

running applications such Body Tracking and Camera Calibration.

/ Setup \

/ED 2 cameras are placed around the lab cell, each of
which are connected to a ZED Box. By connecting all the
/ED boxes via ethernet to a router, we have a local
network from which we have the ability to access every
camera via their IP addresses. The ZED Boxes also allow us
to run applications such as Body Tracking on the cameras
due to the GPU within each ZED Box.

ZED 2 Stereo Camera

Body Tracking

The user can select a specific camera and bring up two live
feeds. One showing the normal view and the other with
body tracking running. Body tracking overlays the normal
view with a skeleton image representing the joints and
basic face structure of a person. The detail of the skeleton
can be altered from 18 points to 38 points which affects

14 15

the speed and processing power of the video. /e

1
O &) Q

o rd, L0

/ Camera Calibration \

Camera Calibration is a large part of this project and
involves calibrating both the intrinsic and extrinsic camera
parameters, as well as the positions of the cameras
relative to each other.

Stereo Calibration

Using OpenCV and a Checkerboard,
| can calibrate each ZED 2 camera to
calculate their intrinsic and extrinsic
parameters.

Camera Positioning Calibration

Using different calibration tools such as ArUco Markers,
Checkerboards and the ZED 360 skeleton calibration, | can
calculate the camera positions relative to each other within

the environment.
g1l =

aaaaaaaa

Creating a simulated environment, ="
| can run optimisation algorithms§g
to minimise the errors and create
accurate results for these
positions. These results can be

compared to the ZED 360
optimisation which uses body tracking on one person

Wking around the room to calibrate the cameras positioy

Conclusion \

A GUI has been created that allows the lab’s staff to view
the cameras’ live feeds and run several applications
through the GUI. On start up, the GUI runs a bash file
which automatically turns on the streaming script on all
the cameras. Optimisation of the camera positioning is a
key focus and staff are able to move and have both a static
ArUco marker as well as make a dataset with a moving
marker to calculate and record camera positioning. The

GUI has been redesigned to be user friendly and aesthetic,
while also functioning as a powerful tool for users /

p.kinnell@lboro.ac.uk

www.mcddm.ac.uk
www.intelligent-automation.org.uk
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measurement through
photogrammetry

The process of using a phone’s camera to generate measurements for clothing

BOdY

Authors: Robin Holmes, Wen Guo, Cong Sun, Peter Kinnell

How to measure someone with a smartphone:

There are two major ways to get a 3d model from a
smartphone, LIDAR scanning and photogrammetry. LIDAR
scanning requires a LIDAR sensor (sometimes also called a
time-of-flight sensor) which is limited to certain recent I-

Phone and I-Pad models as well as three now discontinued Take vi.deg
Samsung phones. Photogrammetry on the other hand fully en.C|rcI|ng
requires only the camera, something all modern phones have. subject

By taking this model and essentially slicing it into strips,
measurements can be acquired from the whole body.

Load video Run meshroom
A quick introduction to photogrammetry: onto compute on ?atSked
Photography is the process of projecting a 3d object onto a 2d node PIIHOE

plane, photogrammetry is an attempt at reversing this
process. It’s often quite a computationally and data intensive
process, requiring a fairly large dataset, including photos from
all angles, to create a successful model. Photogrammetry is
also sometimes called “Structure From Motion (SFM)” as by
using frames from a video you get a near perfect dataset.

Create masks
with
SegmentDINO

Extract frames
from video

Visual SFM

Meshroom Kiri Engine Polycam

-

The result here is This model is  Visual SFM failed to Insanely noisy, results While the model may look This model is not
extremely noisy and objectively the best for produce 3 viable that almost make like one of the best at first actually a point cloud,
lacks detail, the whole the application, note model, instead giving Colmap look good. glance, this is actually one  thjs is a textured model
scene having just 102k the clearly defined |ess than 2 thousand 527k points means it’s of the least useful, note making it much harder

points. Looking at the
arms in  particular,
some areas are entirely
impossible to measure.

limbs without holes and
the relatively high 164k
points. Some areas are
still somewhat sparse

(E.G. the shirt)

not lacking in detail,
but it also took the
longest to run by far.

data points. Some
recognizable features
such as the lanyard are
still visible, but nothing
that can be used.

Measurements from model:

0.10 -

0.05 -

0.00 -

—0.05 A

—0.10 A

By slicing the model on the XY plane we can generate a
series of rough ovals of data points, and these data
points can then have an actual oval fitted to them. The
code that generates this best fit oval gives the semi
major and semi minor radii which is everything we
need to find the perimeter.

By inputting these results into the slicer, we have seen
results within 5% of the expected value (after scaling by

-0.4

Robin Holmes
LinkedIn:

.0 0.2

a predetermined known factor).

0.4

the fusing between the . pull usable data from.

arms and legs makin .

. : "5 Also note the fusing
measuring impossible.
Also, there’s a strange between the legs and

the fringing on the arms
- the model is basically
useless.

object ejecting itself from
the top of the model that
isn't on the real object.

Final steps:

Finding the scaling factor of the model
is currently a challenging and very
involved process and getting this wrong
can cause results to be entirely useless.

Using a checkerboard to automatically
scale would probably be the fastest and
easiest solution, but more testing is
needed.

www.mcddm.ac.uk
www.intelligent-automation.org.uk



AutomaticAssembly Systembasedonan <k,

Object Detection and Localization Algorithm

Ahmad Abdin, Cong Sun, Claire Guo, Masoud Sotoodeh-Bahraini, Peter Kinnell

i1 M Loughborough
7 University

Introduction

In automatic assembly systems, object detection is a necessity for the process to be completed, hence the reason behind the use of point cloud

stitching and PartFinder.

Why point cloud stitching?

- Adaptable - Can interface using python
- Accurate - Easily evaluated

Point Cloud Stitching

Point cloud stitching was accomplished via two methods:

Method #1: Manually by using a point cloud processing software
(CloudCompare)

Method #2: Through a python code which consists of 4 sections (input,
pose graph, optimization, output).

Take scans of the , Apply ground segmentation

Roughly align the scans lUse ICP (lterative-Closest
object to each scan (see figure 1) ’

(see figure 2 & 3) Point) - IR

Start —» —»

Figure 1. Workflow of point cloud stitching and multiway registration

Figure 4. Rough
alignment of point

Figure 2. Scans
after the ground

Figure 3. Rough
alignment of point

segmentation clouds through clouds through python

process. CloudCompare scripted pose graph
functions (manual). estimation.

Results:

The images below include the real-world LEGO brick structure, the final
point cloud images and the transformational matrices of the scans after the
Iterative-Closest-Point (ICP) is accomplished for both methods.

Method #1 Method #2

Real Image

. ) . ransform points and display

Final RM5*: 1.20629 (computed on 4740 points) .00000000e+00 2.858736200-20 -1.08420217¢-19 ©.00000000e+00]

(* RMS is potentially weighted, depending on the selected 2.82167851e-20 1.00000000c+00 ©0.0PROEEGBE+O0 -5.55111512e-17]

options) .00000000E100 0.00000000e+00 1.00000000e+00 ©.00EERARE+0 ]
000000EPE+00  ©.0000R00E+00 ©.00000000e+00 1.00000000e+00] |

[[ 9.99996196e-01 2.58648340e-03 9.58586193¢-04 -6.16945681e-01]

9564e-03 9.99996648e-01 1.15865851e-04 1.39453796-02]

Transformation matrix

0978 -0.091 -0.186 90524
0.095 0899 0012 27682
0184 -0.029 0982 72736
0.000 0000 0000 1.000

-2.586595
I;

-9.58283295e-84 -1.18344885e-84 9.99999534e-01 4.89565283e-02]
.00000000e+00 ©.00000000e+00 ©.000000002+00 1.00000000e+00] ]

9.98692619e-01 4.71612301e-02 1.97198363e-02 -1.51549348e+01]
.65915465e-02 9.98509828e-01 -2.84139363e-02 2.84177630e+01]
10304866e-02 2.74580108e-82 9.99401709e-01 1.063891726e+00 ]
.00000000e+00 ©.00000000e+20 ©.00000000e+00 1.00000000e+00] |

9.99288459e-01 -1.28200124e-02 -3.54714451e-02 2.42533522e+01]
.18335817e-02 9.99541211e-81 -2.78807128e-02 1.77807348e+01]
.58126023e-02 2.74411203e-82 9.98981703e-01 -1.26357964e+00 ]
.00000000e+00 ©.00000000e+00 ©.000000002+00 1.00000000e+00] |

This report has been output to Console (F8)

Conclusion & Future work

After working with point cloud stitching and PartFinder, it is deduced that
point cloud stitching does have an advantage due to its accuracy. However,
whilst PartFinder provides faster results and is more user-friendly, factors
like the angle of the camera and object, and the colour and size of the
object, affect the results. To further improve the findings and increase the
understanding of the methods, the next stage is:

Ahmad Abdin
LinkedIn:

Why PartFinder?
- Flexibility.
- Fast process.

- Can interface using python
- Able to detect a variety of objects

PartFinder

The Ensenso PartFinder allows users to detect objects by uploading a CAD
file of the item to their NXView software. This module was used, placing
an Ensenso N30 camera on a tripod in order to angle it on top of an area
that included a number of 2x2 and 2x4 LEGO bricks placed randomly with
different rotations. By doing this we could investigate the software’s
efficiency in object detection.

Step #1: Model Generation

CAD Model

This section allows the user to modify how
the camera views the object itself. This is
done through working on many important
parameters such as:

STUPLY File ers\Ahmad Abdin\Downloads\LEGO_DUPLO_BRICK_2X2_igs.sti ...

Size 31.70 mm x 31.70 mm x 23.70 mm

Angular discretization:

simplification of the possible orientations or
angles at which an object can be detected.
Camera viewpoints:

controlling the sides at which the camera
would be able to identify.

Step #2: Finding the Model

CAD File LEGO_DUPLO_BRICK_2X2_igs.sti

The next stage of the process includes the
parameters of how the software will help the
camera detect the object, based on the
object’s characteristics.

Distance ratio:

changes the detection rate when searching
over a distance.

Coverage threshold:

selects the threshold where the points are
considered to be on the surface.

Hypothesis clustering:

groups educated guesses through object
characteristics.

Mode! 1D 18
Search Distance 407 mm

Template Count 10544
Angular Discretization 150/ 59
View Cone Angle 100°
Relative Sampling Distance  0.030

View Points ZPostive
Textured yes
Subsampling Factor 1.000

Results:
The results provide the user with the object’s 6 degrees of freedom along
with the score (confidence of the software that the object represents the
CAD model), surface coverage, texture score, and coverage threshold.

Surface Coverage Texture

—— Coverage Threshold Score 2 a z i . -
11 075 0.78 50 0.72 130.06 78.29 375.15 59.61° -70.58° -27.29°
2 0.69J 0.84 5.0 0.59 53.54 51.13 388.52 148.44° 30.70° 49.35°
13 0.69 0.74 5.0 0.65 158.16 -7.66 417.51 172.36° 4.40° 162.14°
4 0.67 0.71 50 0.64 -28.80 -36.84 408.65 175.92° 2.15° -23.80°
< 0.67 0.73 50 0.62 62.84 -67.95 406.67 25.99° -169.93° 117.64°

o Integrate hand-eye calibration to the point cloud stitching APl code

o Increase the number and variety of objects tested with both methods

e Incorporate both methods into robots with the aim of allowing it to
scan and detect objects without the need of a person to direct it

www.mcddm.ac.uk
www.intelligent-automation.org.uk
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Authors: Uche Okwese, Peter Kinnell, Wen Claire Guo and Cong Sun

ABSTRACT
-Generating a 3D Model library data set in Blender using Python Scripting to replicate work environment to be used by a collection of Neural Networks

-Determining optimal rendering resolution, image sample size and simulated environment correlation to work environment needed for an effective
object recognition neural network

1) METHODOLOGY 2) RENDERING RESULTS - (WITH BACKGROUNDS)

- LEGO CAD Model imported into
simulated environment

Camera Simulation:

Item type: PNG File
Dimensions: 1080 x 1080 ,

- Cameras generated using a
Blender Python script
function

- Rendered images illustrating the
g | different perspectives of the 2 X 2
- Camera generation location i Oyt pemgomgims | b2-oseemanposiimims. LEGO brick

IS randomized within a set

maximum and minimum
distance from LEGO Brick

Computer Specifications:  Rendering Time (In Seconds):

» - 2 backgrounds (Wood & Metal
surface) added to simulation by

importing pictures from the lab to
3D Plan

s . 4 I
" 4 ’ o . . . -
. ’, o ™ . v, . - »
) ' ) L ek ~ LN

Processor: AMD Ryzen Per Image: [RESOIUtiOn]: ' BG2 + Object image_Pose_0_Cam_5.png écz+Objectimage_Pose_o_Cam_s.png
Threadripper 2950x 16-Core
Processor 3.50 GHy 0.8s (Without Background) & 1.5s (With 3) RENDERING RESULTS — (NO BACKGROUND)

Backgrouna) [300 X 300} - Rendered images  show
RAM: 64 GB : :

5.85 (Without) & 9s (With) [640 X 640] appearance of LEGO Brick without
GPU: NVIDIA GeForce GTX | | e B . a background or background

: 7.2s (Without) & 17s(With) [1080 X 1080] i S SR reflection
1660 TI oo pet TRES o : 5“»,“3
\..)&‘}; A d "’:;:;“ 3 .:‘5:"‘3'... .
Annotation Directory: o womamersencnims -~ NO DACkground samples obtained
- Each render is split into 2 directories (Image & Annotations), =i | for "Background Subtraction;” a
annotations contain image data for the computer to interpret - method for localizing an object
what 2 human visualizes. o regardless of its surroundings
- Directories are defined in the Python Script and image data can
be returned by calling the variables and functions in which they
are stored. 4) Al TRAINING RESULTS
Mj BG1 + Objectannotation_Pose_4 Cam_31.txt - Motepad .
e Edit Format View Hels loss —: - y-axis represents value of loss
Camera Location: <Vector (-8.2541, -8.2731, ©.9397)> : | function (Lower loss values
Camera Rotation: <Euler (x=0.157%, y=-0.0000, z=-8.9334), order="XYZ">» AT ’
Object Location: <Vector (-8.1765, -8.2157, 6.3315):> 2 indicate that the model’s
Object Rotation: <Euler (x=1.3600, y=0.850008, z=1.2000), order="XYZ'> predictions are closer to the
Class: LEGO DUPLO BRICK 2X2 igs s
Camera Name: Camera.il ground tl’Uth IabEIS)'
. " L0k 155 - X-axis is the number of trials.
Al Training: YOLOv5 (COCO) MODEL: GITHUB MODEL: OUR MODEL:
- A bounding box is an imaginary — . o —e— |

— rectangle  that illustrates  the T T l

approximate location and size of an

. object

- This bounding box is automatically

created using an external Python

program (or embedded) to return the General Opensource Pre-existing GitHub model Using our own custom
output bounding box images from the object detection used to build our neural model for the same
dataset library fails to detect network misinterprets Neural Network, the Al
our LEGO similar objects to LEGO can now accurately
5) CONCLUSION & FUTURE WORK: detect LEGO bricks

Monotonous and time-consuming tasks, like bounding box creation, and image and annotation generation, become fully automated.

Training with our custom data makes the model work more efficiently as the simulated environment can be specialised to depict conditions and
interactions for the target environment.

In the future this model will be used to combine simulation and a small batch of real data to yield more accurate and precise results for object detection.

Uche Okwese  *Ziipegsd i www.mcddm.ac.uk
LinkedIn: www.intelligent-automation.org.uk



