RESPONSES TO ISOCAPNIC HYPOXIA IN A HOT WORK ENVIRONMENT DIFFER IN YOUNGER AND OLDER MALES

Miriam E Clegg, Michael S Koehle, Kyong Tae Kim, Luisa V Giles, Michael L Walsh and Matthew D White

Laboratory for Exercise and Environmental Physiology, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 Univ Dr, Burnaby, BC, V5A 1S6, Canada.

Contact person: miriam_clegg@sfu.ca

INTRODUCTION
Climate change is impacting the health of the population, especially the elderly population. Michelozzi et al. (2009) emphasize that high temperatures increase respiratory-related hospital admissions, particularly in the elderly population, but the underlying mechanisms are poorly understood. The impact of extreme heat events on hospital admissions is expected to increase in European cities as a result of global warming and a progressively aging population [1]. In Denver, Colorado, higher temperatures were found to be an important factor in increasing the frequency of hospitalization for acute myocardial infarction and congestive heart failure in men and women over 65 years of age, reinforcing that this is a global issue [2].

Older individuals have reduced thermoregulatory responses relative to those of younger individuals [3]. Some of these changes include reduced sweat rate [4] and attenuated cutaneous blood flow [5]. Respiratory evaporative heat loss is one of the body’s principal cranial heat loss mechanisms [6]. Respiratory responses to heat in the older population have not been analysed in detail and resolving the nature of these ventilatory responses in such conditions promises to the further understanding this groups ability to thermoregulate. This has special relevance given the increased breathing-related illness in older populations during heat waves.

In temperate conditions, hypoxic ventilatory responses may or may not be reduced in the elderly. Peterson et al. (1981) found ventilatory responses to hypoxia were reduced by approximately 50% in 65-79 year old males [7]. Kronenberg and Drage (1973) found similarly a P_AO_2 of 40 mmHg in young healthy males resulted a pulmonary ventilation of 40.1 ± 4.7 L/min (mean ± SEM) whereas this increment was a significantly smaller 10.2 ± 1.2 L/min in older healthy males [8]. In contrast to these results, septuagenarians were shown to have similar ventilatory responses to acute hypoxia as younger controls [9]. The ventilatory response to hypoxia consists of 2 phases [10]. The peripheral chemoreflex sensitivity to a diminished partial pressure of oxygen in the arterial blood (P_AO_2) drives a preliminary acute increase in pulmonary ventilation [11]. With sustained hypoxia, the initial increase in pulmonary ventilation is followed by a subsequent decline, reaching a new steady state by approximately 20 min; this is known as the Hypoxic Ventilatory Decline (HVD). The HVD is thought to represent peripheral chemoreceptor desensitization and other centrally mediated mechanisms [12].

In order to assess the effect of heat on the thermoregulatory and ventilatory responses of older individuals, the effect of an isocapnic hypoxic ventilatory challenge was assessed both under
normothermic (NT) core temperatures and hyperthermic (HT) core temperatures in older and younger volunteers. It was hypothesized that: 1) older individuals will have an impaired ventilatory response to hypoxia and 2) this ventilatory response will be less augmented under HT conditions than for younger individuals.

METHODS

Volunteers: A sample size of 4 volunteers with a mean difference in peak HVR 1.20±0.49 L·min⁻¹·%⁻¹ [10] with an α=0.05 gave a power of 0.9. Volunteers included 5 older males (mean ± SD): age 57.4 ± 5.4) years, weight 88.9 ± 12.0 kg, height 1.84 ± 0.16 m) and 5 younger controls (4 male 1 female; age 30.0 ± 9.2 years, weight 71.3 ± 10.9 kg, height 1.75 ± 0.07 m). All were non-smokers, non-asthmatics and refrained from caffeine, alcohol, and heavy exercise for 24 h prior to testing. The office of research ethics at SFU granted approval for the study in accordance with the Helsinki Declaration. Each volunteer gave a written, informed consent after being thoroughly familiarized with the experimental protocol, instrumentation, and risks of participation.

Instrumentation: Each participant wore a nose clip and was fitted with a mouthpiece mounted on a 2-way flow sensor housing. Inspired gases were delivered to the flow sensor housing using a 2-way non-rebreathing valve (NRB 2700, Hans Rudolph Inc, Kansas City, Mo.). Breath-by-breath gas samples, for measurement of pulmonary ventilation (V_E) and its components, were drawn from the inspired and expired air to a metabolic cart (Model: Vmax 229, Sensormedics, Yorba Linda, Calif.) at a rate of ~600 mL·min⁻¹. The details of the calibration of the metabolic cart have already been reported (Chu et al 2007).

Arterial hemoglobin oxygen saturation (SaO₂) was measured using a pulse oximeter (Masimo Radical, Irvine, Calif.) attached to the participant’s left ear lobe. In each volunteer a calibrated nasopharyngeal esophageal temperature (T_ES) thermistor probe (Mon-atherm, Mallinckrodt Med. Inc., St Louis, Mo.) was positioned at the T8/T9 level [13].

The data acquisition system (Nat. Instr., Austin TX, USA) included a program written in LabVIEW (v. 7.0, Nat. Instr., Austin) operating on a Windows™-based personal computer. This system controlled an End Tidal Forcing (ETF) system so as to control end-tidal gases at the appropriate levels, presented in Koehle et al. (2009) [14]. An analog signal from the flow sensor for each breath from the metabolic cart was also used to trigger breath-by-breath collection of pulmonary ventilation, HR, SaO₂, and T_ES by the data acquisition system. A walk-in climatic chamber (L - 5.08 m, W -3.75 m and H - 2.49 m; Tenney Engineering Inc., Union, NJ, USA) was employed for the passive heating portion of the study.

Protocol: In a NT environment resting data were collected from each volunteer for a 30-min period before an isocapnic Hypoxic Ventilatory Response (iHVR) test was conducted in method similar to that of Steinback and Poulin [10]. This test consisted of a 5-min rest period, followed by 20-min isocapnic exposure to a P_ETO₂ of 50 mmHg. End-tidal CO₂ was maintained at each participant’s resting level over the 20-min HVR test that was followed by a 5-min rest period. Approximately 1 h rest was given and a second iHVR was conducted. Prior to the second test the volunteer was passively heated in a climatic chamber at 50°C, ~20% RH until their T_ES had risen by ~1.5 °C. Each volunteer wore shorts, T-shirt and running shoes and a tightly sealed vapour impermeable rain suit. When the T_ES was increased to the target level seals on the rain suit were
opened and T_{ES} was maintained at that level. The both iHVR tests were performed on the same
day to remove day-to-day variations in the iHVR [15].

The iHVR and HVD responses were determined as presented in Steinbeck and Poulin [10]. To express
iHVR as a linear function of the hypoxic stimulus, $P_{ET}O_2$ was converted to a calculation
of O_2 saturation (ScO_2) using the transform described by Severinghaus (1979) [16]:

$$ScO_2 = (((P_{ET}O_2^3 + 150 P_{ET}O_2)^{-1} \times 23400) + 1)^{-1} \times 100$$

The iHVR was calculated as peak HVR (peakHVR) and every 5-min through the duration of the
20-min hypoxic test. iHVR was calculated as the change in V_E divided by the change in ScO_2.

$$iHVR \ (L \ min^{-1} \ %^{-1}) = \frac{\Delta V_E}{\Delta ScO_2}$$

The HVD was calculated as the % decrease of V_E from peakHVR as the % return to control
$P_{ET}CO_2$ following 20-min of hypoxia.

$$HVD \ (%) = 100 \left(1 - \frac{HV\ Rt}{peakHVR} \right)$$

All delta values were calculated in relation to the time point occurring immediately prior to the
onset of hypoxia (time =−1 min).

Statistical Analysis: Univariate ANOVA were employed to analyse the NT and HT effects with
fixed factors of the Age (control and older), time (+5, +10, +15 and +20 min). A post-hoc mean
comparison at each of the time points was conducted with unpaired t-tests. A univariate ANOVA
was employed to assess the differences in between HT and NT conditions using the mean of the
4 iHVR time points for each volunteer using fixed factors of Temperature (NT and HT) and Age
(control and older). Core temperature, peakHVR and HVD responses were assessed with
univariate ANOVAs with factors Age (control and older) and Temperature (NT and HT). The
level of significance was set at an $\alpha < 0.05$. Analyses were performed with SPSS® (version 16.0)
statistical software package for Windows® (SPSS Inc., Chicago, Ill.).

RESULTS
For T_{ES} there was a main effect of the Temperature ($P<0.0001$, n=10) but no Age effect
($P=0.723$, n=10) nor interaction between the Temperature and Age (Control group-NT: 37.03 ±
0.60°C, HT: 38.22 ± 0.55°C; Older group-NT: 37.05 ± 0.48°C, HT: 38.41 ± 0.25°C; $P=0.669$,
n=10). All volunteers completed the NT- but only 3/5 of the older group in the HT-environment
completed the iHVR test. Of the two volunteers who could not complete the iHVR, one
completed the first 6 min and the other volunteer was unable to complete any of the iHVR test;
both volunteers experienced presyncopal symptoms. Irrespective of Temperature, between
groups peakHVR was significantly reduced ($P=0.007$) for the older vs. the younger group (Fig.
2). There was a significant main effect of Age for iHVR in NT ($P=0.001$) but not in HT
($P=0.147$) with means comparisons given in Table 1. Neither Temperature nor Age affected
HVD (Table 2).
Figure 2. Peak isocapnic hypoxic ventilatory response (peakHVR) in normothermic (NT) and hyperthermic (HT) conditions in control (cont) and older age group.

Table 1. \(iHVR\) responses (mean ± SD) at 5, 10, 15 and 20 min in control and older age groups in normothermic (NT) and hyperthermic (HT) environments. (*p < 0.05 between groups).

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Control NT</th>
<th>Control HT</th>
<th>Older NT</th>
<th>Older HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5</td>
<td>0.95 ± 0.29</td>
<td>1.64 ± 1.13</td>
<td>0.23 ± 0.12</td>
<td>0.19 ± 0.26</td>
</tr>
<tr>
<td>+10</td>
<td>0.64 ± 0.22</td>
<td>1.39 ± 1.35</td>
<td>0.13 ± 0.28</td>
<td>0.07 ± 0.21</td>
</tr>
<tr>
<td>+15</td>
<td>0.52 ± 0.25</td>
<td>0.86 ± 0.72</td>
<td>0.08 ± 0.13</td>
<td>0.23 ± 0.42</td>
</tr>
<tr>
<td>+20</td>
<td>0.43 ± 0.21</td>
<td>0.79 ± 0.80</td>
<td>0.04 ± 0.12</td>
<td>0.43 ± 0.70</td>
</tr>
</tbody>
</table>

Table 2. Hypoxic ventilatory decline in control and older volunteer in a normothermic (NT) and hyperthermic (HT) environment.

<table>
<thead>
<tr>
<th>Hypoxic ventilatory decline (%)</th>
<th>NT</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>64.68 ± 29.74</td>
<td>74.58 ± 19.16</td>
</tr>
<tr>
<td>Older Group</td>
<td>96.87 ± 12.57</td>
<td>68.18 ± 49.00</td>
</tr>
</tbody>
</table>

DISCUSSION AND CONCLUSIONS

Heat loss from the upper airways, occurs at a site directly beside the hypothalamus. This is the principal integrative tissue in thermoregulation. Increased ventilation will increase the heat loss due primarily to evaporation of the airway mucus [17]. The difference between the groups for \(iHVR\) (Table 1) and peakHVR (Fig.1) indicated that under both NT and HT conditions the older group had a blunted response to hypoxia. This reduced ventilatory response to \(iHVR\) worsened in the HT environment, again, reducing the older volunteer’s ability to respond to the HT environment.
Core temperatures increased in both the control and the older groups by over 1°C in the HT environment, an amount that is enough to induce a hyperventilation [18]. However, under these conditions 3/5 of the older volunteers were unable to complete iHVR test due to presyncopal symptoms. This results help explain why older have individuals increased hospital admissions during heat waves. They appear to have both reduced ventilatory responses to hypoxia and a reduced capacity for thermoregulation [1, 2].

This pilot study indicates that for future studies less severe conditions are needed to assess the HVR. These conditions could be achieved by aiming to raise TES by only ~1.0°C and by reducing the level of hypoxia to a P\textsubscript{ETO\textsubscript{2}} to 60 mmHg. The results support that the control of breathing is impaired in older people and this effect is augmented in a HT environment. Respiratory control in older people is something that requires further research, especially in light of the imminent climate change.

REFERENCES