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A System of Systems

Many names for the same thing:

Networked Systems

Cyber Physical Systems

Systems of Systems

These systems are typically characterised by

Spatial structure (who interacts with who?)

Dynamics of the subsystems
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Objective

Many possible objectives, some of the simplest (to state)

include:

Stability analysis

Performance and robustness analysis

Control, i.e. modify the behaviour/improve the performance

Scale up

What’s the problem?

The dynamic models of such systems are huge!

Cannot hope to design a centralised controller for the

whole system
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Model Reduction

Assume that a model of the system is given, and that the model

has n state variables. Fix a value k < n, find a model with k

state variables that optimally approximates the original model.

Is it possible to preserve some properties of the original

system?
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Model Reduction

Consider the nonlinear dynamical system

ẋ = g(x ,u) (1)

y = h(x)

where x ∈ R
n is the state vector and xss = 0 is a stable

steady state.

The goal is to construct a system

˙̃x = g̃(x̃ ,u)

ỹ = h̃(x̃)

with x̃ ∈ R
k where k < n and the error is small.
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LTI System

Linearising (1) about xss with a constant input uss we obtain

A =
∂g(x ,u)

∂x

∣∣∣
x=xss,u=uss

, B =
∂g(x ,u)

∂u

∣∣∣
x=xss ,u=uss

,

giving

ẋ = Ax + Bu

y = Cx

G =

[
A B

C 0

]
.

G(s) = C(sI − A)−1B
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Measuring the size of a system

We will use the H∞-norm of G as a measure of size.

‖G(s)‖H∞
:= sup

ω∈R+

σ̄[G(jω)]

‖G‖H∞
:= sup

u(·)

‖y(t)‖L2

‖u(t)‖L2

This leads to an intuitive way to describe the error between

two systems:

‖G − Gr‖H∞
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Block Diagram View
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Truncation

Assume the system has been partitioned as follows

G =




A11 A12 B1

A21 A22 B2

C1 C2 0


 , x1 ∈ R

n−k , x2 ∈ R
k .

Then a simple reduced order model is:

Gr =

[
A11 B1

C1 0

]
, x1 ∈ R

n−k

Bad Idea! No reason to assume the least controllable states

are the least observable...
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Balanced Realization

1 Assume have a stable LTI system:

Ĝ =

[
Â B̂

Ĉ 0

]
.

2 Compute the gramians, P and Q

ÂP + PÂT + B̂B̂T = 0, P � 0,

ÂT Q + QÂ + ĈT Ĉ = 0, Q � 0.

3 Find R such that P = RT R and set RQRT = UΣ2U.
4 Let T−1 = RT UΣ1/2, then

G =

[
T ÂT−1 T B̂

ĈT−1 0

]

is a balanced realization.
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Ĝ =

[
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ĈT−1 0

]

is a balanced realization.



Introduction Formulation Structured Projection Positivity Examples

Balanced Realization

1 Assume have a stable LTI system:
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Balanced Realization

The system G is balanced:

G =

[
T ÂT−1 T B̂

ĈT−1 0

]
=:

[
A B

C 0

]

thus

AΣ+ ΣAT + BBT = 0,

ATΣ+ ΣA + CT C = 0,

where

Σ =

[
Σ1 0

0 Σ2

]
= diag(σ1, σ2, . . . , σn),

and σ1 ≥ σ2 ≥ . . . , σn ≥ 0.

Σ1 = diag(σ1, . . . , σk ),

Σ2 = diag(σk+1, . . . , σn).
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Balanced Truncation

1 Partition G according to

G =




A11 A12 B1

A21 A22 B2

C1 C2 0


 .

2 Then the k-dimensional reduced system is

Gr =

[
A11 B1

C1 0

]
, ‖G − Gr‖H∞

≤ 2

n∑

i=k+1

σi .

3 The projectors that map (A,B,C) → (A11,B1,C1) are

V = T−T [ Ik 0k×n−k ], W = T [ Ik 0k×n−k ]

which gives (A11,B1,C1) = (V T AW ,V T B,CW ).
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Structured Projection

Constructing the balanced realization destroys the

structure of G.

The reduced order model will not have any physical

meaning.

We can use structured projectors to maintain a subset of the

states and reduce those remaining.
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Yeast Glycolysis Pathway
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Structured Projection

1 We begin with the partitioned system:

G =




A11 A12 B1

A21 A22 B2

C1 C2 0


 , x1 ∈ R

n−k , x2 ∈ R
k .

(Note the switch in dimensions)

2 Define the generalised gramians

P =

[
P11 0n−k ,k

0k ,n−k P22

]
� 0, Q =

[
Q11 0n−k ,k

0k ,n−k Q22

]
� 0,

which are obtained from the solutions of

AP + PAT + BBT � 0

ATQ+QA + CT C � 0
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Structured Projectors Contd.

1 Assume the states of x2 are reduction candidates. Define

T :=

[
In−k 0n−k ,k

0n−k ,k T22

]
,

where T22 satisfies

T −1
22 P22T

−T
22 = T T

22Q22T22 = Σ22,

where Σ22 is diagonal.
2 Assume we will truncate r states from x2, then

W =

[
In−k 0n−k ,k−r

0k−r ,n−k T ⋄
22

]
, Wr =

[
0n−k ,r

T r
22

]
,

V =

[
In−k 0n−k ,k−r

0k−r ,n−k (T −1
22 )⋄

]
, Vr =

[
0n−k ,r

(T −1
22 )r

]
.

3 The reduced order model is then Gr = (VT AW,VT B,CW).
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Monotone systems

Definition 1 (Metzler Matrices)

A matrix M ∈ R
n×n =

{
mij

}
is said to be Metzler if mij ≥ 0 for all

i 6= j .

Definition 2 (Monotone dynamical system)

Consider the system ẋ = g(x), with g locally Lipschitz,

g : Rn
≥0 → R

n and g(0) = 0. The associated flow map is

φ : R≥0 × R
n
≥0 → R

n . The systems is said to be monotone

(w.r.t R≥0) if x ≤ y =⇒ φ(t , x) ≤ φ(t , y) for all t ≥ 0.
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Linking Metzler and Monotone

Proposition 1

A system ẋ = g(x) is monotone with respect to the positive

orthant if and only if

∂(gi(x))

∂xj

≥ 0 ∀i 6= j , ∀x

Or simply put, the Jacobian of g(x) is a Metzler matrix for all x

in R
n
≥0.
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Monotone Systems
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Existence of Structured Gramians

Assume we have the system

ẋ = Ax + Bu (2)

y = Cx

1 A is Metzler and stable, B and C are not required to be
positive

2 The system is partitioned as shown earlier

Lemma 1

Under the assumptions above, the generalised structured

Gramians P and Q satisfying the Lyapunov inequalities always

exist, thus the transformation matrix T exists.
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Reduction Algorithm

1 Solve the Lyapunov inequalities for P and Q

2 Construct T22 using P22 and Q22

3 Set r = k − 1 and construct the projectors V and W.

Define w = W22, v = V22

4 Apply the projectors to get

At =

[
A11 A12w

vT A21 vT A22w

]
,Bt =

[
B1

vT B2

]
,

CT
t =

[
CT

1

wT CT
2

]
.
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Reduction Algorithm cont.

Lemma 2

Let P and Q be block-diagonal structured Gramians. Assume

the matrix P22Q22 is irreducible. Let T22 be a transformation

such that

T −1
22 P22T

−T
22 = T T

22Q22T22 = Σ,

with Σ11 ≥ Σ22 ≥ · · · ≥ Σkk . Let w and v be as defined

previously. Then, there exists such a balancing transformation

T22 such that:

1 The vectors w and v are nonnegative.

2 At is Metzler.

3 Let Gr = (At ,Bt ,Ct) Then ‖G − Gr‖H∞
≤ 2

k∑
i=2

Σii .
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The Nonlinear System

Using the projections we’ve computed, the nonlinear

system

ẋ = g(x ,u)

y = h(x)

is transformed into

żm = VT g(Wzm,Wr zr ,u)

żr = VT
r g(Wzm,Wr zr ,u) = 0

yd
r = ΩC(Wzm +Wrzr )

via the state transformation z = T x .
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Toy Example

!"
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ṁi =
ci1

1 + p2
j

− ci2mi + ci5ui , i , j ∈ {1,2} , i 6= j

ṗi = ci3mi − ci4pi

x = [p1,m1,p2,m2]
T , monotone w.r.t diag(1,1,−1,−1)R4

≥0.
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Toy Example
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!%

Table : The error in the macroscopic concentrations.

Method \ Error L1 L2 L∞

QSSA 67.3 11.9 3.2

Left Configuration 61.0 8.1 2.2

Middle Configuration 1.9 0.59 1.1

Right Configuration 13.8 2.3 0.79
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Yeast Glycolysis Model
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Yeast Glycolysis Model

QSSA

States \ Error L1 L2 L∞ t(s)

F6P, 2PG, PEP 1.21 0.75 0.98 163
G6P, F6P, 3PG, 2PG, PEP 2.05 1.16 1.59 214

REDUCTION BY {k1, k2} STATES IN EVERY REGION

Lumped Region(s) {k1, k2} L1 L2 L∞ t(s)

{G6P, F6P}, {2PG-PEP} {1, 2} 1.18 0.79 1.03 161
{GLCi-F6P}, {BPG-PEP} {2, 3} 1.05 0.57 0.78 260
{GLCi-F6P}, {3PG-PEP} {2, 1} 0.47 0.3 0.4 137
{GLCi-F6P}, {3PG-PEP} {1, 1} 0.14 0.07 0.09 116

TRUNCATION BY {k1, k2} STATES IN EVERY REGION

Lumped Region(s) {k1, k2} L1 L2 L∞ t(s)

{G6P, F6P}, {2PG-PEP} {1, 2} 15.1 3.2 6.1 14
{GLCi-F6P}, {BPG-PEP} {2, 3} 5.9 2.8 2.9 14
{GLCi-F6P}, {3PG-PEP} {2, 1} 4.1 1.9 1.9 14
{GLCi-F6P}, {3PG-PEP} {1, 1} 4.0 1.8 1.6 15
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Conclusion

Derived structured projection-based reduction method

Applicable to biological systems (monotone, almost

monotone)

Paves the way for the stochastic problem...

Thank you!
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