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Many names for the same thing:
@ Networked Systems
@ Cyber Physical Systems
@ Systems of Systems

These systems are typically characterised by
@ Spatial structure (who interacts with who?)
@ Dynamics of the subsystems
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Objective

Many possible objectives, some of the simplest (to state)
include:

@ Stability analysis

@ Performance and robustness analysis

@ Control, i.e. modify the behaviour/improve the performance
@ Scale up

What'’s the problem?
@ The dynamic models of such systems are huge!

@ Cannot hope to design a centralised controller for the
whole system



Formulation

Model Reduction

Model reduction




Formulation

Model Reduction

Assume that a model of the system is given, and that the model
has n state variables. Fix a value k < n, find a model with k
state variables that optimally approximates the original model.

Is it possible to preserve some properties of the original
system?
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x = g(x,u) (1)
y = h(x)

where x € R" is the state vector and xss = 0 is a stable
steady state.



Formulation

Model Reduction

@ Consider the nonlinear dynamical system

x = g(x,u) (1)
y = hx)

where x € R" is the state vector and xss = 0 is a stable
steady state.

@ The goal is to construct a system

= g(x.u)
= h(%)

<t X

with X € R¥ where k < n and the erroris small.



Formulation

LTI System

Linearising (1) about xgs with a constant input ugs we obtain

ag(x, u) B ag(x, u)

) )
ox X=Xss,U=Uss ou X=Xss,U=Uss

giving
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Formulation

Measuring the size of a system

We will use the H..-norm of G as a measure of size.

1G(8)[|# = sup F[G(jw)]

weRT
Iyl
G ‘= su 2
1Glloe = SUP I,

This leads to an intuitive way to describe the error between
two systems:

1G = Grllm..



Formulation

Block Diagram View

Block Diagram Interpretation
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A1 Az | By
A21 A22 Bg , X1 € Rnfk,XQ € Rk.
Ci G ‘ 0
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Formulation

Truncation

Assume the system has been partitioned as follows

Ay Az | By
G=| Ay Ax | B , X1 € Rnfk,XQ € Rk.
Ci G ‘ 0

Then a simple reduced order model is:

A11 | By

G’:[ Ci |0

} . X eRTK

Bad Idea! No reason to assume the least controllable states
are the least observable...
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Structured Projection

Balanced Realization

@ Assume have a stable LTI system:

-[32]

© Compute the gramians, P and Q
AP+ PAT+BBT = 0, P>0,
ATQ+QA+C’C = 0, Q=0.

© Find R such that P = RTR and set RQRT = Ux2U.
Q Let T-'=RTUX'/2, then

TAT-'| TB
cT'| o

is a balanced realization.

G:




Structured Projection

Balanced Realization

@ The system G is balanced:
G [ TAT-'| TB

cT']o C|
thus
Ay +YAT +BBT = 0,
ATy 1A+ CTC = 0,
where
z:[% z()z]:diag(m,ag,...,an),
andoy1 > 00> ...,0n>0.

Xy = diag(0'1,...,0'k),
Z2 = diag(0k+1 PR 7‘7n)~



Structured Projection

Balanced Truncation

@ Partition G according to

A1 A2 | By
G=| Ay Ax|B |.
Ci G \ 0
© Then the k-dimensional reduced system is
Ai1 | B

n
G,:[ c o ] ||G—G,||Hoo§2'z oj.
i=k+1



Structured Projection

Balanced Truncation

@ Partition G according to

A1 A2 | By
G=| An Ax|B |.
Ci G \ 0
© Then the k-dimensional reduced system is

A1 | B L
G, = [ (;1 01 ] , 1G=Gilu. <2 > o

! i=k+1
© The projectors that map (A, B, C) — (A1, By, Cy) are
V=TTl Okxnk]s W=T[lh Okxn k]

which giVGS (A11,B1, C1) = (VTAW, VTB, CW)
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Structured Projection

@ Constructing the balanced realization destroys the
structure of G.

@ The reduced order model will not have any physical
meaning.
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Structured Projection

@ Constructing the balanced realization destroys the
structure of G.

@ The reduced order model will not have any physical
meaning.

We can use structured projectors to maintain a subset of the
states and reduce those remaining.



Structured Projection

Yeast Glycolysis Pathway
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Structured Projection

@ We begin with the partitioned system:
B

Ar Ag2
G=| Ay An | B |, x¢ Rn_k, Xo € Rk.
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@ Define the generalised gramians
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Structured Projection

Structured Projection

@ We begin with the partitioned system:
B

Ar Ag2
G=| Ay An | B |, x¢ Rn_k, Xo € Rk.
Ci GCo ‘ 0

(Note the switch in dimensions)
@ Define the generalised gramians

P11 On—kk
P= :
[ Okn—k  Po

Q11 Op_kk

=0
Okn-k Qo2

— 9

oo |

which are obtained from the solutions of

AP +PAT +BBT < 0
ATO+0QA+C'C < 0



Structured Projection

Structured Projectors Contd.

@ Assume the states of x, are reduction candidates. Define

Ih-k  On_kk
7- = n n s ,
Op—kk T2

where 72, satisfies
Too PooTpy = TahQooToo = Loz,
where ¥, is diagonal.
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Structured Projectors Contd.

@ Assume the states of x, are reduction candidates. Define
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7- = n n s ,
[ Op—kk T2
where 72, satisfies
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Structured Projection

Structured Projectors Contd.

@ Assume the states of x, are reduction candidates. Define

I 0
T = n—k n—Kk.,k ] ’
[ Op—kk T2

where 72, satisfies
Too' Po2Tn’ = TapQo2Ton = Lo2,

where ¥, is diagonal.
©Q Assume we will truncate r states from x,, then

In—k  Op—k k- ] [ On—«k }
W — n n s r , W — n ,r ,
[ Ok—r,n—k 202 ' 2r2

In_k Op—k k— } [ On—k,r ]
V= n n _ ' ) Vr = —13 :
[ 0k—r,n—k (7-221)<> ' (7-221)r

© The reduced order model is then G, = (VT AW, VT B, CW).
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A matrix M € R™" = {m,-j} is said to be Metzler if m; > 0 for all
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Monotone systems

Definition 1 (Metzler Matrices)
A matrix M € R™" = {m,-j} is said to be Metzler if m; > 0 for all

i

Definition 2 (Monotone dynamical system)

Consider the system x = g(x), with g locally Lipschitz,
g:RZ, — R" and g(0) = 0. The associated flow map is

¢ :R>o x RZy — R" . The systems is said to be monotone
(W.rtRso) ifx <y = o(t,x) < ¢(t,y) forall t > 0.




Positivity

Linking Metzler and Monotone

Proposition 1

A system x = g(x) is monotone with respect to the positive
orthant if and only if

9(gi(x)) F
ox) >0 Vi#j, Vx

Or simply put, the Jacobian of g(x) is a Metzler matrix for all x
inRZ,.
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Existence of Structured Gramians

@ Assume we have the system

X = Ax+ Bu (2)
y = Cx

@ Ais Metzler and stable, B and C are not required to be
positive
© The system is partitioned as shown earlier



Positivity

Existence of Structured Gramians

@ Assume we have the system

x = Ax+ Bu (2)
y = Cx

@ Ais Metzler and stable, B and C are not required to be
positive
© The system is partitioned as shown earlier

Under the assumptions above, the generalised structured
Gramians P and Q satisfying the Lyapunov inequalities always
exist, thus the transformation matrix T exists.




Positivity

Reduction Algorithm

@ Solve the Lyapunov inequalities for 7 and O
© Construct 72, using Poo and Qoo

© Setr = k — 1 and construct the projectors V and W.
Define w = Woo, V= Voo

© Apply the projectors to get

| A AW | By
At - |: VTA21 VTA22W ’Bt - VTBQ ’

CT
o =| ey |



Positivity

Reduction Algorithm cont.

Let’P and O be block-diagonal structured Gramians. Assume
the matrix P22 Qoo Is irreducible. Let Too be a transformation
such that

Tog PooTpy' = TahQosToo = X,

with 11 > Yoo > --- > Y. Let w and v be as defined
previously. Then, there exists such a balancing transformation
Too such that:

@ The vectors w and v are nonnegative.
Q A; is Metzler.

k
0 Let G = (At, Bt, Ct) Then HG — GrHHoo <2 Z 2 i
i=2




Positivity

The Nonlinear System

@ Using the projections we’ve computed, the nonlinear
system

x = g(x,u)
y = hx)

is transformed into

Zm - VTg(WZn'h WrZr, U)
Zr - VrTg(WZn'h WrZr, U) - 0

via the state transformation z = 7 x.



Examples

Toy Example

SO

. Ci .. , ,
M = s — G+ Cislj, ,j € {1,2},i# ]
1+ pf

pi = CigMi— Ciap;

x = [p1, my, p2, mo] ", monotone w.r.t diag(1, 1, -1, —1)R%,,.



Examples

Toy Example

S S

Table : The error in the macroscopic concentrations.

Method \ Error Ly L, Ly
QSSA 673 119 3.2

Left Configuration 61.0 8.1 2.2
Middle Configuration 1.9 0.59 1.1
Right Configuration 13.8 2.3 0.79




ast Glycolysis

Model

aLco

]

GCi_ pro
T6P— — oK K
- ADP
\

Trehalose Gep
)
0P ’Wmi |
\ F6P AITP
F268P — — > PiK
0P
——————— Fi68P

NAD ™ NAD
aw
NADH
MO Ccerat 7 59G
P
, o v
0P
I 3PG '

PEP.

’
\ _ATP
77777777 o K
ADP
Succinate ‘TT PYR
m}\
o2

3NADH  3NAD

NADH  NAD

Acetate AcAld
N A
H,HK
NAoH

EtOH

|

|
’eﬂeﬁeﬁeﬂeﬂeﬂﬁueﬁeﬂeﬂ@

Examples



Examples

Yeast Glycolysis Model

QSSA
States \ Error Ly Lo Lo  H(S)
F6P, 2PG, PEP 121 0.75 098 163

G6P, F6P, 3PG, 2PG, PEP 2.05 1.16 159 214

REDUCTION BY {kj, ko } STATES IN EVERY REGION

Lumped Region(s) {ki, ko } L4 Lo Loo t(s)
{G6P, F6P}, {2PG-PEP} {1,2} 1.18 0.79 1.03 161
{GLCi-F6P}, {BPG-PEP} {2,3} 1.05 057 0.78 260
{GLCi-F6P}, {3PG-PEP} {2,1} 0.47 0.3 0.4 137
{GLCi-F6P}, {3PG-PEP} {1,1} 0.14 0.07 0.09 116

TRUNCATION BY {K1, ko} STATES IN EVERY REGION

Lumped Region(s) {ki, ko } L4 Lo Loo t(s)
{G6P, F6P}, {2PG-PEP}  {1,2} 151 32 6.1 14
{GLCi-F6P}, {BPG-PEP} {2,3} 59 28 29 14
{GLCi-F6P}, {3PG-PEP} {2,1} 4.1 1.9 1.9 14
{GLCi-F6P}, {3PG-PEP}  {1,1} 40 18 16 15




Examples

Conclusion

@ Derived structured projection-based reduction method

@ Applicable to biological systems (monotone, almost
monotone)

@ Paves the way for the stochastic problem...

Thank you!
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