Decomposition and Reduction Methods for Analysing Systems of Systems

James Anderson

University of Oxford
Systems-Net Webinar Series
February 4, 2015

Acknowledgements

- Aivar Sootla (Lèige)
- Antonis Papachristodoulou (Oxford)
- Sanjay Lall (Stanford)
- Systems-NET

Motivation

A System of Systems

Many names for the same thing:

- Networked Systems
- Cyber Physical Systems
- Systems of Systems

A System of Systems

Many names for the same thing:

- Networked Systems
- Cyber Physical Systems
- Systems of Systems

These systems are typically characterised by

- Spatial structure (who interacts with who?)
- Dynamics of the subsystems

Objective

Many possible objectives, some of the simplest (to state) include:

- Stability analysis
- Performance and robustness analysis
- Control, i.e. modify the behaviour/improve the performance
- Scale up

Objective

Many possible objectives, some of the simplest (to state) include:

- Stability analysis
- Performance and robustness analysis
- Control, i.e. modify the behaviour/improve the performance
- Scale up

What's the problem?

- The dynamic models of such systems are huge!
- Cannot hope to design a centralised controller for the whole system

Model Reduction

Model reduction

Model Reduction

Assume that a model of the system is given, and that the model has n state variables. Fix a value $k<n$, find a model with k state variables that optimally approximates the original model.

Is it possible to preserve some properties of the original system?

Model Reduction

- Consider the nonlinear dynamical system

$$
\begin{align*}
\dot{x} & =g(x, u) \tag{1}\\
y & =h(x)
\end{align*}
$$

where $x \in \mathbb{R}^{n}$ is the state vector and $x_{s s}=0$ is a stable steady state.

Model Reduction

- Consider the nonlinear dynamical system

$$
\begin{align*}
\dot{x} & =g(x, u) \tag{1}\\
y & =h(x)
\end{align*}
$$

where $x \in \mathbb{R}^{n}$ is the state vector and $x_{s s}=0$ is a stable steady state.

- The goal is to construct a system

$$
\begin{aligned}
\dot{\tilde{x}} & =\tilde{g}(\tilde{x}, u) \\
\tilde{y} & =\tilde{h}(\tilde{x})
\end{aligned}
$$

with $\tilde{x} \in \mathbb{R}^{k}$ where $k<n$ and the error is small.

LTI System

Linearising (1) about $x_{s s}$ with a constant input $u_{s s}$ we obtain

$$
A=\left.\frac{\partial g(x, u)}{\partial x}\right|_{x=x_{s s}, u=u_{s s}}, \quad B=\left.\frac{\partial g(x, u)}{\partial u}\right|_{x=x_{s s}, u=u_{s s}},
$$

giving

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x \\
G & =\left[\begin{array}{l|l}
A & B \\
\hline C & 0
\end{array}\right] . \\
G(s) & =C(s l-A)^{-1} B
\end{aligned}
$$

Measuring the size of a system

We will use the \mathcal{H}_{∞}-norm of G as a measure of size.

$$
\|G(s)\|_{\mathcal{H}}:=\sup _{\omega \in \mathbb{R}^{+}} \bar{\sigma}[G(j \omega)]
$$

This leads to an intuitive way to describe the error between
twan systems.

Measuring the size of a system

We will use the \mathcal{H}_{∞}-norm of G as a measure of size.

$$
\begin{aligned}
\|G(s)\|_{\mathcal{H}} & :=\sup _{\omega \in \mathbb{R}^{+}} \bar{\sigma}[G(j \omega)] \\
\|G\|_{\mathcal{H}_{\infty}} & :=\sup _{u(\cdot)} \frac{\|y(t)\|_{\mathcal{L}_{2}}}{\|u(t)\|_{\mathcal{L}_{2}}}
\end{aligned}
$$

Measuring the size of a system

We will use the \mathcal{H}_{∞}-norm of G as a measure of size.

$$
\begin{aligned}
\|G(s)\|_{\mathcal{H}_{\infty}} & :=\sup _{\omega \in \mathbb{R}^{+}} \bar{\sigma}[G(j \omega)] \\
\|G\|_{\mathcal{H}_{\infty}} & :=\sup _{u(\cdot)} \frac{\|y(t)\|_{\mathcal{L}_{2}}}{\|u(t)\|_{\mathcal{L}_{2}}}
\end{aligned}
$$

This leads to an intuitive way to describe the error between two systems:

$$
\left\|G-G_{r}\right\|_{\mathcal{H}_{\infty}}
$$

Block Diagram View

Block Diagram Interpretation

Truncation

Assume the system has been partitioned as follows

$$
G=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right], \quad x_{1} \in \mathbb{R}^{n-k}, x_{2} \in \mathbb{R}^{k} .
$$

Truncation

Assume the system has been partitioned as follows

$$
G=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right], \quad x_{1} \in \mathbb{R}^{n-k}, x_{2} \in \mathbb{R}^{k}
$$

Then a simple reduced order model is:

$$
G_{r}=\left[\begin{array}{c|c}
A_{11} & B_{1} \\
\hline C_{1} & 0
\end{array}\right], \quad x_{1} \in \mathbb{R}^{n-k}
$$

Bad Idea! No reason to assume the least controllable states
are the least observable.

Truncation

Assume the system has been partitioned as follows

$$
G=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right], \quad x_{1} \in \mathbb{R}^{n-k}, x_{2} \in \mathbb{R}^{k}
$$

Then a simple reduced order model is:

$$
G_{r}=\left[\begin{array}{c|c}
A_{11} & B_{1} \\
\hline C_{1} & 0
\end{array}\right], \quad x_{1} \in \mathbb{R}^{n-k}
$$

Bad Idea! No reason to assume the least controllable states are the least observable...

Balanced Realization

(1) Assume have a stable LTI system:

$$
\widehat{G}=\left[\begin{array}{c|c}
\widehat{A} & \widehat{B} \\
\hline \widehat{C} & 0
\end{array}\right] .
$$

Balanced Realization

(1) Assume have a stable LTI system:

$$
\widehat{G}=\left[\begin{array}{c|c}
\widehat{A} & \widehat{B} \\
\hline C & 0
\end{array}\right] .
$$

(2) Compute the gramians, P and Q

$$
\begin{aligned}
\widehat{A} P+P \widehat{A}^{T}+\widehat{B} \widehat{B}^{T} & =0, & P \succeq 0, \\
\widehat{A}^{T} Q+Q \widehat{A}+\widehat{C}^{T} \widehat{C} & =0, & Q \succeq 0 .
\end{aligned}
$$

Balanced Realization

(1) Assume have a stable LTI system:

$$
\widehat{G}=\left[\begin{array}{c|c}
\widehat{A} & \widehat{B} \\
\hline \hat{C} & 0
\end{array}\right] .
$$

(2) Compute the gramians, P and Q

$$
\begin{aligned}
\widehat{A} P+P \widehat{A}^{T}+\widehat{B} \widehat{B}^{T} & =0, \quad P \succeq 0, \\
\widehat{A}^{T} Q+Q \widehat{A}+\widehat{C}^{T} \widehat{C} & =0, \quad Q \succeq 0 .
\end{aligned}
$$

(3) Find R such that $P=R^{T} R$ and set $R Q R^{T}=U \Sigma^{2} U$.

Balanced Realization

(1) Assume have a stable LTI system:

$$
\widehat{G}=\left[\begin{array}{c|c}
\widehat{A} & \widehat{B} \\
\hline \widehat{C} & 0
\end{array}\right]
$$

(2) Compute the gramians, P and Q

$$
\begin{aligned}
\widehat{A} P+P \widehat{A}^{T}+\widehat{B} \widehat{B}^{T} & =0, \quad P \succeq 0 \\
\widehat{A}^{T} Q+Q \widehat{A}+\widehat{C}^{T} \widehat{C} & =0, \quad Q \succeq 0
\end{aligned}
$$

(3) Find R such that $P=R^{T} R$ and set $R Q R^{T}=U \Sigma^{2} U$.
(4) Let $T^{-1}=R^{T} U \Sigma^{1 / 2}$, then

$$
G=\left[\begin{array}{c|c}
T \widehat{A} T^{-1} & T \widehat{B} \\
\hline \widehat{C} T^{-1} & 0
\end{array}\right]
$$

is a balanced realization.

Balanced Realization

- The system G is balanced:

$$
G=\left[\begin{array}{c|c}
T \widehat{A} T^{-1} & T \widehat{B} \\
\hline \widehat{C} T^{-1} & 0
\end{array}\right]=:\left[\begin{array}{c|c}
A & B \\
\hline C & 0
\end{array}\right]
$$

thus

$$
\begin{aligned}
A \Sigma+\Sigma A^{T}+B B^{T} & =0 \\
A^{T} \Sigma+\Sigma A+C^{T} C & =0
\end{aligned}
$$

where

$$
\Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)
$$

and $\sigma_{1} \geq \sigma_{2} \geq \ldots, \sigma_{n} \geq 0$.

$$
\begin{aligned}
& \Sigma_{1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right) \\
& \Sigma_{2}=\operatorname{diag}\left(\sigma_{k+1}, \ldots, \sigma_{n}\right)
\end{aligned}
$$

Balanced Truncation

(1) Partition G according to

$$
G=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right] .
$$

(2) Then the k-dimensional reduced system is

$$
G_{r}=\left[\begin{array}{c|c}
A_{11} & B_{1} \\
\hline C_{1} & 0
\end{array}\right], \quad\left\|G-G_{r}\right\|_{\mathcal{H}_{\infty}} \leq 2 \sum_{i=k+1}^{n} \sigma_{i} .
$$

Balanced Truncation

(1) Partition G according to

$$
G=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right] .
$$

(2) Then the k-dimensional reduced system is

$$
G_{r}=\left[\begin{array}{c|c}
A_{11} & B_{1} \\
\hline C_{1} & 0
\end{array}\right], \quad\left\|G-G_{r}\right\|_{\mathcal{H}_{\infty}} \leq 2 \sum_{i=k+1}^{n} \sigma_{i} .
$$

(3) The projectors that map $(A, B, C) \rightarrow\left(A_{11}, B_{1}, C_{1}\right)$ are

$$
V=T^{-T}\left[\begin{array}{ll}
I_{k} & 0_{k \times n-k}
\end{array}\right], \quad W=T\left[\begin{array}{ll}
I_{k} & 0_{k \times n-k}
\end{array}\right]
$$

which gives $\left(A_{11}, B_{1}, C_{1}\right)=\left(V^{\top} A W, V^{\top} B, C W\right)$.

Structured Projection

- Constructing the balanced realization destroys the structure of G.
- The reduced order model will not have any physical meaning.

Structured Projection

- Constructing the balanced realization destroys the structure of G.
- The reduced order model will not have any physical meaning.

We can use structured projectors to maintain a subset of the states and reduce those remaining.

Yeast Glycolysis Pathway

Structured Projection

(1) We begin with the partitioned system:

$$
G=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right], \quad x_{1} \in \mathbb{R}^{n-k}, x_{2} \in \mathbb{R}^{k} .
$$

(Note the switch in dimensions)
(2) Define the generalised gramians
$\mathcal{P}=\left[\begin{array}{cc}\mathcal{P}_{11} & 0_{n-k, k} \\ 0_{k, n-k} & \mathcal{P}_{22}\end{array}\right] \succeq 0, \quad \mathcal{Q}=\left[\begin{array}{cc}\mathcal{Q}_{11} & 0_{n-k, k} \\ 0_{k, n-k} & \mathcal{Q}_{22}\end{array}\right] \succeq 0$,
Which are obtained from the solutions of

Structured Projection

(1) We begin with the partitioned system:

$$
G=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right], \quad x_{1} \in \mathbb{R}^{n-k}, x_{2} \in \mathbb{R}^{k}
$$

(Note the switch in dimensions)
(2) Define the generalised gramians

$$
\mathcal{P}=\left[\begin{array}{cc}
\mathcal{P}_{11} & 0_{n-k, k} \\
0_{k, n-k} & \mathcal{P}_{22}
\end{array}\right] \succeq 0, \quad \mathcal{Q}=\left[\begin{array}{cc}
\mathcal{Q}_{11} & 0_{n-k, k} \\
0_{k, n-k} & \mathcal{Q}_{22}
\end{array}\right] \succeq 0
$$

which are obtained from the solutions of

$$
\begin{aligned}
A \mathcal{P}+\mathcal{P} A^{T}+B B^{T} & \preceq 0 \\
A^{T} \mathcal{Q}+\mathcal{Q} A+C^{T} C & \preceq 0
\end{aligned}
$$

Structured Projectors Contd.

(1) Assume the states of x_{2} are reduction candidates. Define

$$
\mathcal{T}:=\left[\begin{array}{cc}
I_{n-k} & 0_{n-k, k} \\
0_{n-k, k} & \mathcal{T}_{22}
\end{array}\right],
$$

where \mathcal{T}_{22} satisfies

$$
\mathcal{T}_{22}^{-1} \mathcal{P}_{22} \mathcal{T}_{22}^{-T}=\mathcal{T}_{22}^{T} \mathcal{Q}_{22} \mathcal{T}_{22}=\Sigma_{22}
$$

where Σ_{22} is diagonal.

Structured Projectors Contd.

(1) Assume the states of x_{2} are reduction candidates. Define

$$
\mathcal{T}:=\left[\begin{array}{cc}
I_{n-k} & 0_{n-k, k} \\
0_{n-k, k} & \mathcal{T}_{22}
\end{array}\right]
$$

where \mathcal{T}_{22} satisfies

$$
\mathcal{T}_{22}^{-1} \mathcal{P}_{22} \mathcal{T}_{22}^{-T}=\mathcal{T}_{22}^{T} \mathcal{Q}_{22} \mathcal{T}_{22}=\Sigma_{22}
$$

where Σ_{22} is diagonal.
(2) Assume we will truncate r states from x_{2}, then

$$
\begin{gathered}
\mathcal{W}=\left[\begin{array}{cc}
I_{n-k} & 0_{n-k, k-r} \\
0_{k-r, n-k} & \mathcal{T}_{22}^{\diamond}
\end{array}\right], \quad \mathcal{W}_{r}=\left[\begin{array}{c}
0_{n-k, r} \\
\mathcal{T}_{22}^{r}
\end{array}\right], \\
\mathcal{V}=\left[\begin{array}{cc}
I_{n-k} & 0_{n-k, k-r} \\
0_{k-r, n-k} & \left(\mathcal{T}_{22}^{-1}\right)^{\diamond}
\end{array}\right], \quad \mathcal{V}_{r}=\left[\begin{array}{c}
0_{n-k, r} \\
\left(\mathcal{T}_{22}^{-1}\right)^{r}
\end{array}\right] .
\end{gathered}
$$

Structured Projectors Contd.

(1) Assume the states of x_{2} are reduction candidates. Define

$$
\mathcal{T}:=\left[\begin{array}{cc}
I_{n-k} & 0_{n-k, k} \\
0_{n-k, k} & \mathcal{T}_{22}
\end{array}\right]
$$

where \mathcal{T}_{22} satisfies

$$
\mathcal{T}_{22}^{-1} \mathcal{P}_{22} \mathcal{T}_{22}^{-T}=\mathcal{T}_{22}^{T} \mathcal{Q}_{22} \mathcal{T}_{22}=\Sigma_{22}
$$

where Σ_{22} is diagonal.
(2) Assume we will truncate r states from x_{2}, then

$$
\begin{aligned}
& \mathcal{W}=\left[\begin{array}{cc}
I_{n-k} & 0_{n-k, k-r} \\
0_{k-r, n-k} & \mathcal{T}_{22}^{\diamond}
\end{array}\right], \quad \mathcal{W}_{r}=\left[\begin{array}{c}
0_{n-k, r} \\
\mathcal{T}_{22}^{r}
\end{array}\right], \\
& \mathcal{V}=\left[\begin{array}{cc}
I_{n-k} & 0_{n-k, k-r} \\
0_{k-r, n-k} & \left(\mathcal{T}_{22}^{-1}\right)^{\diamond}
\end{array}\right], \quad \mathcal{V}_{r}=\left[\begin{array}{c}
0_{n-k, r} \\
\left(\mathcal{T}_{22}^{-1}\right)^{r}
\end{array}\right] .
\end{aligned}
$$

(3) The reduced order model is then $G_{r}=\left(\mathcal{V}^{\top} A \mathcal{W}, \mathcal{V}^{\top} B, C \mathcal{W}\right)$.

Monotone systems

Definition 1 (Metzler Matrices)

A matrix $M \in \mathbb{R}^{n \times n}=\left\{m_{i j}\right\}$ is said to be Metzler if $m_{i j} \geq 0$ for all $i \neq j$.

Monotone systems

Definition 1 (Metzler Matrices)

A matrix $M \in \mathbb{R}^{n \times n}=\left\{m_{i j}\right\}$ is said to be Metzler if $m_{i j} \geq 0$ for all $i \neq j$.

Definition 2 (Monotone dynamical system)

Consider the system $\dot{x}=g(x)$, with g locally Lipschitz, $g: \mathbb{R}_{\geq 0}^{n} \rightarrow \mathbb{R}^{n}$ and $g(0)=0$. The associated flow map is $\phi: \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}^{n} \rightarrow \mathbb{R}^{n}$. The systems is said to be monotone (w.r.t $\mathbb{R}_{\geq 0}$) if $x \leq y \Longrightarrow \phi(t, x) \leq \phi(t, y)$ for all $t \geq 0$.

Linking Metzler and Monotone

Proposition 1

A system $\dot{x}=g(x)$ is monotone with respect to the positive orthant if and only if

$$
\frac{\partial\left(g_{i}(x)\right)}{\partial x_{j}} \geq 0 \quad \forall i \neq j, \quad \forall x
$$

Or simply put, the Jacobian of $g(x)$ is a Metzler matrix for all x in $\mathbb{R}_{\geq 0}^{n}$.

Monotone Systems

Existence of Structured Gramians

- Assume we have the system

$$
\begin{align*}
\dot{x} & =A x+B u \tag{2}\\
y & =C x
\end{align*}
$$

(1) A is Metzler and stable, B and C are not required to be positive
(2) The system is partitioned as shown earlier

Existence of Structured Gramians

- Assume we have the system

$$
\begin{align*}
\dot{x} & =A x+B u \tag{2}\\
y & =C x
\end{align*}
$$

(1) A is Metzler and stable, B and C are not required to be positive
(2) The system is partitioned as shown earlier

Lemma 1

Under the assumptions above, the generalised structured Gramians \mathcal{P} and \mathcal{Q} satisfying the Lyapunov inequalities always exist, thus the transformation matrix \mathcal{T} exists.

Reduction Algorithm

(1) Solve the Lyapunov inequalities for \mathcal{P} and \mathcal{Q}
(2) Construct \mathcal{T}_{22} using \mathcal{P}_{22} and \mathcal{Q}_{22}
(3) Set $r=k-1$ and construct the projectors \mathcal{V} and \mathcal{W}.

Define $w=\mathcal{W}_{22}, v=\mathcal{V}_{22}$
(3) Apply the projectors to get

$$
\begin{gathered}
A_{t}=\left[\begin{array}{cc}
A_{11} & A_{12} w \\
v^{\top} A_{21} & v^{\top} A_{22} w
\end{array}\right], B_{t}=\left[\begin{array}{c}
B_{1} \\
v^{\top} B_{2}
\end{array}\right], \\
C_{t}^{\top}=\left[\begin{array}{c}
C_{1}^{T} \\
w^{\top} C_{2}^{T}
\end{array}\right] .
\end{gathered}
$$

Reduction Algorithm cont.

Lemma 2

Let \mathcal{P} and \mathcal{Q} be block-diagonal structured Gramians. Assume the matrix $\mathcal{P}_{22} \mathcal{Q}_{22}$ is irreducible. Let \mathcal{T}_{22} be a transformation such that

$$
\mathcal{T}_{22}^{-1} \mathcal{P}_{22} \mathcal{T}_{22}^{-T}=\mathcal{T}_{22}^{\top} \mathcal{Q}_{22} \mathcal{T}_{22}=\Sigma
$$

with $\Sigma_{11} \geq \Sigma_{22} \geq \cdots \geq \Sigma_{k k}$. Let w and v be as defined previously. Then, there exists such a balancing transformation \mathcal{T}_{22} such that:
(1) The vectors w and v are nonnegative.
(2) A_{t} is Metzler.
(3) Let $G_{r}=\left(A_{t}, B_{t}, C_{t}\right)$ Then $\left\|G-G_{r}\right\|_{\mathcal{H}_{\infty}} \leq 2 \sum_{i=2}^{k} \Sigma_{i i}$.

The Nonlinear System

- Using the projections we've computed, the nonlinear system

$$
\begin{aligned}
\dot{x} & =g(x, u) \\
y & =h(x)
\end{aligned}
$$

is transformed into

$$
\begin{aligned}
\dot{z}_{m} & =\mathcal{V}^{T} g\left(\mathcal{W} z_{m}, \mathcal{W}_{r} z_{r}, u\right) \\
\dot{z}_{r} & =\mathcal{V}_{r}^{T} g\left(\mathcal{W} z_{m}, \mathcal{W}_{r} z_{r}, u\right)=0 \\
y_{r}^{d} & =\Omega C\left(\mathcal{W} z_{m}+\mathcal{W}_{r} z_{r}\right)
\end{aligned}
$$

via the state transformation $z=\mathcal{T} x$.

Toy Example

$$
\begin{aligned}
\dot{m}_{i} & =\frac{c_{i 1}}{1+p_{j}^{2}}-c_{i 2} m_{i}+c_{i 5} u_{i}, \quad i, j \in\{1,2\}, i \neq j \\
\dot{p}_{i} & =c_{i 3} m_{i}-c_{i 4} p_{i}
\end{aligned}
$$

$x=\left[p_{1}, m_{1}, p_{2}, m_{2}\right]^{T}$, monotone w.r.t diag(1,1,-1,-1) $\mathbb{R}_{\geq 0}^{4}$.

Toy Example

Table : The error in the macroscopic concentrations.

Method \backslash Error	L_{1}	L_{2}	L_{∞}
QSSA	67.3	11.9	3.2
Left Configuration	61.0	8.1	2.2
Middle Configuration	1.9	0.59	1.1
Right Configuration	13.8	2.3	0.79

Yeast Glycolysis Model

Yeast Glycolysis Model

QSSA

States \backslash Error	L_{1}	L_{2}	L_{∞}	$t(s)$
F6P, 2PG, PEP	1.21	0.75	0.98	163
G6P, F6P, 3PG, 2PG, PEP	2.05	1.16	1.59	214

REDUCTION BY $\left\{k_{1}, k_{2}\right\}$ STATES IN EVERY REGION

Lumped Region(s)	$\left\{k_{1}, k_{2}\right\}$	L_{1}	L_{2}	L_{∞}	$t(s)$
\{G6P, F6P\}, \{2PG-PEP\}	$\{1,2\}$	1.18	0.79	1.03	161
\{GLCi-F6P\}, \{BPG-PEP\}	$\{2,3\}$	1.05	0.57	0.78	260
\{GLCi-F6P\}, \{3PG-PEP\}	$\{2,1\}$	0.47	0.3	0.4	137
\{GLCi-F6P\}, \{3PG-PEP\}	$\{1,1\}$	0.14	0.07	0.09	116

TRUNCATION BY $\left\{k_{1}, k_{2}\right\}$ STATES IN EVERY REGION

Lumped Region(s)	$\left\{k_{1}, k_{2}\right\}$	L_{1}	L_{2}	L_{∞}	$t(s)$
\{G6P, F6P\}, \{2PG-PEP\}	$\{1,2\}$	15.1	3.2	6.1	14
\{GLCi-F6P\}, \{BPG-PEP\}	$\{2,3\}$	5.9	2.8	2.9	14
\{GLCi-F6P\}, \{3PG-PEP\}	$\{2,1\}$	4.1	1.9	1.9	14
\{GLCi-F6P\}, \{3PG-PEP\}	$\{1,1\}$	4.0	1.8	1.6	15

Conclusion

- Derived structured projection-based reduction method
- Applicable to biological systems (monotone, almost monotone)
- Paves the way for the stochastic problem...

Thank you!

