Proofing the Concept of Sustainable Drainage Schemes Using an Integrated Urban Drainage Model

Anthony Raine

Principal Modeller Catchment Management

Welcome to Pell Frischmann

Contents

- Project / Catchment Description & History;
- Integration With Other Stakeholders;
- Flooding History & Mechanisms;
- Surveys & Modelling Undertaken;
- Joint Probability & Boundary Conditions;
- Damage Cost Assessment;
- Concept Proofing Using the Model;
- Latest Options;
- Conclusions / Lessons Learnt;
- Next Steps.

St Austell Resilient Regeneration (StARR) Project

- Recognition that flooding cannot be entirely prevented, but via a partnership approach the risk can be reduced;
- Partners in StARR Project Include:-
 - Environment Agency;
 - o Cornwall Council;
 - South West Water;
 - o University of Exeter;
 - Cornwall Development Company;
 - West Country Rivers Trust.
- £20M bid to:-
 - reduce flood risk and pollution affecting >500 homes & 200 businesses;
 - reduce flood risk to strategic road and London rail network;
 - work with nature to reduce flood risk & create habitats;
 - encourage investment in area through greater resilience and increase the wellbeing of the affected communities.

European Union

European Regional Development Fund

Pell Frischmann

Par Lane SWMP Case Study

())

Par Lane Integrated Urban Drainage Management – The Key Players

Pell Frischmann

The Local Community

Project History

- 2004 SWW/PF Par DAS/DAP;
- 2006 SWW/PF DG5 Evaluation 5 Internals / 18 Externals;
- 2010 EA/Capita Symonds ISIS -Tuflow Fluvial Model;
- 2012 SWW Supplementary DG5 Evaluation Report Recommending Need For A SWMP;
- 2014 SWW/EA/Cornwall Council/PF SWMP Phase 1;
- 2015 SWW/EA/Cornwall Council/PF SWMP Phase 2 (Incl. Flooding Appraisal & Options Report);
- 2016 SWW/EA/Cornwall Council/PF/Mott MacDonald EU Regional Development Fund Application - SWMP Supporting Information Report.

Simplified Schematic of Drainage within the Study Area

Flooding History

Flood Locations (hydraulic overload) Flood Hotspots Area less susceptible to surface water flooding Area with intermediate susceptibility to surface water flooding

> Area more susceptible to surface water flooding

Flooding Mechanisms

- Multiple sources and complex i.e. All drainage (Incl. Highway Drains, Public SW Sewers, Combined Sewers and Watercourses) systems become inundated and flood under varying conditions;
- Direct rainfall runoff, boundary conditions (tide & river levels), mine adit flows and infiltration all play a part too.

Table 1 - Sources of Flooding at Brooks Corner

	Flood Event			
	5 year	10 year	30 year	100 year
Inverted Siphon (currently maintained by SWW)	0%	0%	1%	2%
Highway Drainage (CC)	48%	48%	55%	60%
Combined Sewers (SWW)	7%	10%	2%	2%
Surface Water Sewers (SWW)	0%	0%	0%	1%
Biscovey Stream (CC/EA)	18%	22%	30%	26%
Overland Flows (private landowners)	27%	19%	11%	6%
St. Blazey Stream (EA)	0%	0%	0%	3%

excellence through innovation

Surveys Undertaken

- Private Drainage Surveys;
- Impermeable Area & Connectivity Surveys;
- CCTV Surveys;
- Flow Surveys;
- Manhole & Ancillary Surveys;
- River Channel & Culvert Surveys;
- Site Walkovers;
- Flooding Questionnaires & Public Meetings.

Modelling Undertaken

- 1D Type II DAP SWW Combined Sewer Model;
- Model Enhancement (Incl. SW/Highway Sewers & Watercourses);
- Model Updated With Additional Survey Information;
- 2D Model of Affected Area Incl. Infiltration Zones On Surrounding Hillsides To Yield Greenfield Runoff Using The Horton Method;
- Verification of IUDM Model;
- Existing Performance Assessment & Historical Verification;
- Creation Of Design Horizon Model (Incl. Allowances For Development Growth, Climate Change & Urban Creep);
- Joint Probability Analysis Of Return Period Rainfall;
- Sensitivity Testing (Incl. Proofing Concept Solutions);
- Detailed Option Modelling.

Climate Change & Joint Probability (Rainfall & Sea Level)

Climate Change

- "Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities", EA;
- Joint Probability
- "Methods in Flood Management: A Guide to Best Practice R&D Technical Report FD2308/TR2", Defra / EA;
- "Joint Probability: Dependence Mapping and Best Practice: Technical report on dependence mapping, R&D Technical Report FD2308/TR1", Defra / EA, March 2005.

Winter months

Contains Ordnance Survey data @ Crown copyright and database rights 2016 Ordnance Survey. All rights reserved. Environment Agency, 100026380.

Proofing Concept Solutions

- Why? To Support Funding Application From EU Regional Development Fund;
- How? Working With Other Stakeholders To Agree What Can Be Achieved & Testing Concepts Using IUDM Model;
- When? 1 Month Tight Timescale Requiring Frequent Meetings Between Parties & Use Of Shared Desktop / Teleconferencing.

Concepts Modelled

- Limiting Flows Within The St. Blazey Stream to 1.1 m³/s;
- Intercepting & Storing Runoff In The Upper Catchment (Incl. Detention Basins / Raingardens);
- Diverting Overland Flow Paths From Brooks Corner;
- Increased Pump Rate Of Biscovey Stream and modifications to the Tredenham Close CSO.

Pell Frischmann

Limiting Flows Within The St. Blazey Stream

())

Intercepting Flows In Upper Catchment

 \times

Pell Frischmann

Increased Pump Rate At Tredenham Close SPS & Diversion Of CSO

Diverting Overland Flow Paths

Latest Options

Scheme 1 – Least Cost / Highest Risk Option

Mitigate hot-spots where raising kerbs may provide a design exceedance route; Burrows Centre Detention Basins

5 x rural basins (capacity ~30cu.m each) to be installed north of Biscovey

Attenuation in Double Trees school ('soft / green' areas only)

1 x 10m wide contour tree planting strip across full width of fields north of Biscovey

Scheme 2 – Medium Cost / Medium Risk Option Incl. Scheme 1, PLUS:

Harbour Road exceedance route

Rain Gardens (Par Lane section only)

5x ADDITIONAL rural basins to be installed north of Biscovey (10 total)

1 x ADDITIONAL 10m wide contour tree planting strip across full width of fields north of Biscovey (2 TOTAL)

Attenuation in Double Trees school (ADDITIONAL attenuation under carparks)

Scheme 3 – High Cost / Low Risk Option Incl Scheme 2, PLUS

All other rain garden opportunities;

Maximise attenuation in Doubletrees School

1 x ADDITIONAL 10m wide contour tree planting strip across full width of fields north of Biscovey (3 TOTAL)

All other detention basin opportunities

LOWER CATCHMENT

let water flow

Conclusions / Lessons Learnt

- Good survey data is required e.g. MH, IAS, CCTV;
- Use of long term flow monitors / sensors and raingauges to better understand performance and to trigger maintenance;
- Sewer ownership issues need to be discussed and resolved. Who will own / maintain assets?;
- Use of long term flow monitors / sensors and raingauges to better understand performance and to trigger maintenance;

Next Steps

- Further modelling / meetings to discuss, agree and refine options (Complete Phase 3 SWMP);
- Review constructability (Phase 4 SWMP);
- Cost options;
- Agree preferred solution and phasing;
- Public engagement;
- Secure funding;
- Progress detailed design;
- Engage contractor and implement solution;
- Review performance.

Questions?

Φ

 \subseteq